BEVITAL AS

Targeted Metabolomics Services

Tryptophan metabolites, kynurenines

trp-met
Updated 14/05/2024

What is measured?

Kynurenine (Kyn), kynurenic acid (KA), quinaldic acid (Qld), anthranilic acid (AA), 3-hydroxykynurenine (HK), xanthurenic acid (XA) and 3-hydroxyanthranilic acid (HAA), picolinic acid (Pic), quinolinic acid (QA), nicotinic acid (NA), nicotinamide (NAM), N1-methylnicotinamide (mNAM).
Method(s): LC-MS/MS (1).

Tryptophan metabolites of the kynurenine pathway

The amino acid tryptophan (Trp) is catabolized mainly through the kynurenine pathway, forming metabolites collectively referred to as kynurenines. Some kynurenines are neuroactive compounds with immunomodulatory effects.
The intial step in this pathway, the conversion of Trp to formylkynurenine (fKyn), is catalyzed by indoleamine 2,3-dioxygenase (IDO), which is activated by pro-inflammatory cytokines, like INFγ and TNFα. fKyn is converted to Kyn, wich in turn is metabolized to HK by the FAD-dependent kynurenine mono-oxygenase (KMO), and then cleaved to HAA by the pyridoxal 5´-phosphate (PLP)-dependent enzyme, kynureninase (KYNU), which also catalyzes the conversion of Kyn to AA. The PLP-dependent enzyme kynurenine transaminase (KAT) catalyzes the formation of two end-stage metabolites, KA (from Kyn) and XA (from HK) (2) (Figure 1).
The downstream metabolite, QA, is converted to nicotinic acid mononucleotide, which is a precursor of niacin and nicotinamide dinucleotide (NAD), i.e. B3 vitamers. N1-methylnicotinamide (mNAM) in urine is used as a marker of niacin status, and administration of NAM resulted in increased plasma concentrations of both NAM and mNAM.
Kynurenic acid (KA) and picolinic acid (Pic) are considered as neuroprotective, whereas 3-hydroxykynurenine (HK) and in particular quinolinic acid (QA) have neuroexcitatory effects (Figure 1). These kynurenines are suggested to be involved in the pathogenesis of some neurodegenerative and neuropsychiatric diseases (2).
The CSF levels of neuroactive kynurenines, KA and HK, show no change (KA) or decrease (HK) with age, whereas the neurotoxic kynurenine, QA, in CSF shows a remarkably strong positive associations with age, but also with markers of neuroinflammation, like neopterin and KTR. These age-related changes may be associated with increasing incidence of neurodegenerative diseases with age (3).
A composite index involving five kynurenines, HKr (HK:(KA+AA+XA+HAA)), is a functional marker of B6 status.

Indication(s)

Investigating risk and pathogenesis of neuropsychiatric, neurodegenerative, cardiovascular, dysmetabolic diseases, cancer and other common chronic conditions.

Specimen, collection and processing

Matrix: EDTA plasma (preferred) or serum. 3-Hydroxykynurenine (HK) and 3-hydroxyanthranilic acid (HAA) decrease (up to 40-70%) whereas anthranilic acid (AA) and in particular nicotinamide (NAM) increase (AA, up to 30%; NAM, up to 300 %) in samples with hemolysis.
Volume: Minimum volume is 60 µL, but 200 µL is optimal and allows reanalysis.
Preparation and stability: The kynurenines have different stability. Kyn and KA are stable, whereas HK and HAA decrease while AA increases during storage of serum/plasma samples. Samples should be put on ice immediately after collection and stored at -80 °C.

Transportation

Frozen, on dry ice. (for general instruction on transportation, click here)

Reported values, interpretation

Reported values: Kyn: 1.0-3.3 µmol/L; KA: 20-100 nmol/L; Qld: 0.2-100 nmol/L; AA: 7-30 nmol/L; HK: 25-80 nmol/L; XA: 2-35 nmol/L; HAA: 10-80 nmol/L; Pic: 20-100 nmol/L; QA: 150-700 nmol/L; NA: < 20 nmol/L; NAM: 100-600 nmol/L; mNAM: 20-250 nmol/L.
Intraclass correlation coefficient (ICC): Kyn: 0.68; KA: 0.68; Qld: na; AA: 0.64; HK: 0.62; XA: 0.58; HAA: 0.54; Pic, na; QA: na; NA: na; NAM: na; mNAM: na.

Literature

1. Midttun, O., Hustad, S., and Ueland, P.M. (2009). Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Sp 23, 1371-79.
2. Ueland, P.M., McCann, A., Midttun, Ø., and Ulvik, A. (2017). Inflammation, vitamin B6 and related pathways. Mol Aspects Med 53, 10-27.
3. de Bie, J., Guest, J., Guillemin, G.J., and Grant, R. (2016). Central kynurenine pathway shift with age in women. J Neurochem 136, 995-1003.

Scroll to Top
Cardiometabolic
Inflammation
Microbiome
Nutrition
Categories

Amino acids, amino acid catabolites, acylcarnitines, TCA metabolites, ketone bodies, AGEs



Kynurenines, ratio-derived metabolites, proteins





SCFAs, indoles, choline metabolites, amino acid derived





B-vitamins, functional markers, and methyl donors, fat-soluble vitamins, essential amino acids, meat & fish intake, tobacco use & coffee intake
Biomarkers (n)
65
18
20
41
View

Amino acids: Alanine, Arginine, Asparagine, Aspartic acid, Glutamic acid, Glutamine, Glycine, Histidine, Isoleucine, Kynurenine, Leucine, Lysine, Methionine, Ornithine, Phenylalanine, Proline, Sarcosine, Serine, Threonine, Total cysteine, Tryptophan, Tyrosine, Valine

Amino acid catabolites: 2-Aminoadipic acid, 2-Hydroxybutyrate, 3-Hydroxysiobutyrate, α-Hydroxyglutaric acid, β-Alanine, β-Aminoisobutyrate, β-Hydroxy B-methylbutyric acid, Phenylacetylglutamine

Acylcarnities: BB, C0, C2, C3, C3-DC, C4, C4-OH, C4-DC, iC5, C5-DC, C5:1, C6, C8, C10, C12, C14, C14-OH, C16, C16-OH, C18, C18-OH, C18:1, C18:2

TCA metabolites: α-Ketoglutarate, Citrate, Fumarate, Isocitrate, Lactate, Malate, Pyruvate

Ketone bodies: Acetoacetate, 3-Hydroxybutyrate

AGEs: Carboxyethyllysine, Carboxymethyllysine

View

Kynurenines: 3-hydroxykynurenine, 3-hydroxyanthranilic acid, Anthranilic acid, Kynurenine, Kynurenic acid, Nicotinic acid, Nicotinamide, N1-methylnicotinamide, Picolinic acid, Quinaldic acid, Quinolinic acid, Xanthurenic acid

Neopterin

Proteins: C-Reactive protein, Calprotectin, Serum Amyloid A

Ratio-derived: Kynurenine/tryptophan ratio, PAr index (PLP, PL, PA)

View

SCFAs: Acetate, Butyrate, Formate, Isobutyrate, Isovalerate, Propionate, Valerate, α-Methylbutyrate

Indoles: 3-Indoxyl sulfate, Imidazole propionate, Indole-3-acetamide, Indole-3-acetate, Indole-3-aldehyde, Indole-3-lactate, Indole-3-propionate

Choline metabolites: Choline, Betaine, DMG, TMAO

Amino acid derived: Phenylacetylglutamine

View

B-vitamins, functional markers, and methyl donors: 4-Pyridoxic acid, Betaine, Choline, Cobalamin, Flavin mononucleotide, Folate, Methylmalonic acid, N1-methylnicotinamide, Nicotinamide, Nicotinic acid, Pyridoxal, Pyridoxal 5-phosphate, Pyridoxine, Riboflavin, Thiamine, Thiamine monophosphate, Total homocysteine

Fat-soluble vitamins: 25-hydroxy vitamin D2, 25-hydroxy vitamin D3, α-Tocopherol (Vit. E), All-trans retinol (Vit. A), Phylloquinone (Vit. K1), y-Tocopherol (Vit. E)

Essential amino acids: Histidine, Isoleucine, Leucine, Lysine, Methionine, Phenylalanine, Threonine, Tryptophan, Valine

Meat and fish intake: 1-Methylhistidine, 3-Methylhistidine, B-Alanine, Creatine, Creatinine, TMAO

Tobacco use and coffee intake: Cotinine, Trans-3-hydroxycotinine, Trigonelline

Volume (μl)
200
150
250
300
Analytical techniques
GC- and LC-MS/MS
LC- and MALDI-MS
GC- and LC-MS/MS
GC- and LC-MS/MS
Turnaround time (weeks)
1
1
1
1

Olink Proteomics

Please fill out the fields below (*required)
We will respond to you as soon as possible.
Thank you for reaching out to Bevital!

Customized analyses

Please fill out the fields below (*required).
We will reply to you soon for a detailed project discussion.
Thank you for reaching out to Bevital!

Mix-and-Match

Please fill out the fields below (*required).
We will respond to you as soon as possible.
Thank you for reaching out to Bevital!

Ready-to-Run

Please fill out the fields below (*required)
We will respond as soon as possible.
Thank you for reaching out to Bevital!

Thanks for joining!

Get updates about new method developments, publications and comming events.