BEVITAL AS

Microbiome

20 biomarkers of 4 different classes from 250 μl volume of serum or plasma sample on GC- and LC-MS/MS platforms. Contact our experts for any questions or inquiries.

Why did we design this panel?

We developed this targeted metabolomics panel for investigating the gut microbiome to precisely quantify specific microbial derived metabolites and understand microbiome-host interactions. This panel helps to identify biomarkers for gut health supporting:

Early Detection of Microbiome Imbalances: By identifying changes in microbial diversity or specific microbial populations, the panel can help to detect dysbiosis (microbial imbalance) associated with conditions like irritable bowel syndrome (IBS), obesity, and metabolic syndrome, enabling early intervention.
Personalized Health Insights: Each person’s microbiome is unique and can impact responses to diet, medications, and lifestyle. The panel can assist personalize nutrition, lifestyle adjustments, and treatment plans according to an individual’s microbiome profile.
Disease Diagnosis and Monitoring: This panel can help diagnose diseases linked to microbiome changes, such as gastrointestinal disorders, autoimmune diseases, and mental health conditions. Regular monitoring aids in tracking disease progression and response to treatments targeting the microbiome.
Immune Function and Inflammation Control: Since the microbiome is closely tied to immune health, this panel can reveal microbial imbalances contributing to chronic inflammation, helping to mitigate associated risks and adjust treatment strategies for inflammation-related conditions.
Integrating with Other Omics: When combined with other omics data (like proteomics or genomics), the panel can provide a fuller picture of an individual’s health, revealing how microbial changes affect metabolic pathways and gene expression.
Promoting Gut-Brain Health: Emerging evidence links the microbiome to neurological and mental health. The selected metabolites can help to identify microbiome shifts associated with mood disorders, cognitive decline, and other neurological conditions, supporting interventions that promote gut-brain health.

Applications: Autoimmune diseases, cancer, cardiovascular diseases, chronic kidney disease (CKD), infectious diseases, gastrointestinal disorders, liver diseases, mental health, metabolic disorders, neurodegenerative disorders, skin conditions.

SCFAs

8 markers by GC-MS/MS

SCFAs, in particular butyrate, are anti-inflammatory, expand the pool of intestinal regulatory T cells, protect against allergic sensitization, mitigate production of reactive oxygen species, are essential for gut integrity, and exert antiproliferative effects on cancer cells. Butyrate’s effects on the immune system are mediated through the inhibition of class I histone deacetylases and activation of G-protein coupled receptors: GPR109A, GPR41 and GPR43. SCFAs increase insulin secretion (via GPR41/43), and low gut-derived SCFAs have been suggested to be associated with type II diabetes, insulin resistance, obesity and NAFLD.

Acetate, Butyrate, Formate, Isobutyrate, Isovalerate, Propionate, Valerate, α-Methylbutyrate

Indoles

7 markers by LC-MS/MS

About 5 % of tryptophan is catabolized by the gut microbome, generating so-called microbiome-derived tryptophan metabolites collectively referred to as indoles. Microbiome-derived indoles have diverse biological roles affecting health. Some are ligands of the aryl hydrocarbon receptor (AhR) thereby modulating the immune response, others have anti-inflammatory and anti-oxidative effects, enhance the intestinal epithelial barrier, increase secretion of gut hormones and stimulate intestinal motility. Indoles are generally thought to mediate beneficial health effects, with the exception of 3IS, a host-microbial co-metabolite generated from indole in the liver.

3-Indoxyl sulfate, Imidazole propionate, Indole-3-acetamide, Indole-3-acetate, Indole-3-aldehyde, Indole-3-lactate, Indole-3-propionate

Choline oxidation

4 markers by LC-MS/MS

Choline oxidation and its related metabolites—betaine, dimethylglycine (DMG), sarcosine, and trimethylamine-N-oxide (TMAO)—are related to the gut microbiome in several ways. Gut bacteria play a crucial role in metabolizing choline into trimethylamine (TMA), which is then absorbed and oxidized in the liver to form TMAO. TMAO has been linked to various health conditions, and the gut microbiome’s ability to convert choline into TMAO may impact the host’s health outcomes. The gut microbiome also influences the production of other choline-derived metabolites like betaine, DMG, and sarcosine, affecting methylation processes and overall metabolic health. The types and activities of gut bacteria determine the efficiency and extent of choline metabolism, influencing the levels of these metabolites in the body, with different gut microbiome compositions linked to varying health outcomes. Lastly, dietary intake of choline and related compounds affects gut microbiome composition and function, creating a bidirectional relationship between diet, the gut microbiome, choline metabolism and host health outcomes.

Choline, Betaine, DMG, TMAO

Amino acid derived metabolite

1 marker by GC-MS/MS

Phenylacetylglutamine (PAGln) is a bacterial metabolic product of phenylalanine. Phenylalanine is initially converted in the gut to phenylpyruvic acid and further to phenylacetic acid, which is conjugated with glutamine in the liver and kidney forming PAGln. PAGln may accumulate in renal disease and therefore is considered as a uremic toxin (2). Circulating concentrations have been related to the development of atherosclerotic cardiovascular disease and major adverse cardiovascular events (MACE), including myocardial infarction, stroke or death, and recently to heart failure and diabetes. Mechanistic studies indicated cardiovascular effects may partly at least be mediated by interaction of PAGln with G-protein coupled adrenergic receptors. 

Phenylacetylglutamine

Scroll to Top

Statistical power is the probability that a statistical test will correctly reject a false null hypothesis (H0​) when a specific alternative hypothesis (H1​) is true. H0​ is the null hypothesis, which states there is no effect or no difference. H1​ is the alternative hypothesis, which states there is a real effect or difference. Alpha (α) is the probability of a Type I error (a false positive), which is the risk of incorrectly rejecting the H0​ when it is actually true. You set this value before the experiment, commonly at 0.05. Beta (β) is the probability of a Type II error (a false negative), which is the risk of failing to reject the H0​ when it is actually false.

Power is calculated as 1−β. Increasing power means you are decreasing the probability of making a Type II error.

Several factors can be adjusted to increase the power of a statistical test:

  • Effect Size: This is the magnitude of the difference you are trying to detect. A larger effect size is easier to detect, thus increasing power. 

  • Sample Size: The number of observations in a study. A larger sample size provides more information about the population, reducing the margin of error and increasing the power to detect a true effect.

  • Variation: Refers to the spread or standard deviation of the data within the population. Less variation makes it easier to distinguish a real effect from random noise, thereby increasing power.

  • Alpha (): Increasing the alpha level (e.g., from 0.05 to 0.10) also increases power, but at the cost of a higher risk of a Type I error. This trade-off is often undesirable.

562 entries « 1 of 29 »
1.

Bakker, Lieke; Ramakers, Inez H G B; van Greevenbroek, Marleen M J; Backes, Walter H; Jansen, Jacobus F A; Schram, Miranda T; van der Kallen, Carla J H; Schalkwijk, Casper G; Wesselius, Anke; Ulvik, Arve; Ueland, Per M; Verhey, Frans R J; Eussen, Simone J P M; Köhler, Sebastian

The kynurenine pathway and markers of neurodegeneration and cerebral small vessel disease: The Maastricht Study Journal Article

In: J Neurol Sci, vol. 474, pp. 123522, 2025, ISSN: 1878-5883.

Abstract | Links | BibTeX

2.

Holthuijsen, Daniëlle D B; van Roekel, Eline H; Bours, Martijn J L; Ueland, Per M; Breukink, Stéphanie O; Janssen-Heijnen, Maryska L G; Konsten, Joop L; Keulen, Eric T P; McCann, Adrian; Brezina, Stefanie; Gigic, Biljana; Kok, Dieuwertje E; Ulrich, Cornelia M; Weijenberg, Matty P; Eussen, Simone J P M

Modeling how iso-caloric macronutrient substitutions are longitudinally associated with plasma kynurenines in colorectal cancer survivors up to 12 months post-treatment Journal Article

In: J Nutr Biochem, vol. 141, pp. 109910, 2025, ISSN: 1873-4847.

Abstract | Links | BibTeX

3.

Belen, Sergen; Patt, Nadine; Kupjetz, Marie; Ueland, Per M; McCann, Adrian; Gonzenbach, Roman; Bansi, Jens; Zimmer, Philipp

Vitamin B status is related to disease severity and modulated by endurance exercise in individuals with multiple sclerosis: a secondary analysis of a randomized controlled trial Journal Article

In: Am J Clin Nutr, vol. 121, no. 6, pp. 1403–1414, 2025, ISSN: 1938-3207.

Abstract | Links | BibTeX

4.

Dahl, Tuva B; Aftab, Friha; Prebensen, Christian; Berdal, Jan-Erik; Ueland, Thor; Barratt-Due, Andreas; Riise, Anne Ma Dyrhol; Ueland, Per Magne; Hov, Johannes R; Trøseid, Marius; Aukrust, Pål; Gregersen, Ida; Myhre, Peder L; Omland, Torbjørn; Halvorsen, Bente

Imidazole propionate is increased in severe COVID-19 and correlates with cardiac involvement Miscellaneous

2025, ISSN: 1532-2742.

Links | BibTeX

5.

Banjara, Sarala; Berggreen, Ellen; Igland, Jannicke; Åstrøm, Anne-Kristine; Midttun, Øivind; Bunæs, Dagmar; Sulo, Gerhard

Plasma levels of immune system activation markers Neopterin and Kynurenine-to-Tryptophan Ratio, and oral health among community-dwelling adults in Norway: a population-based, cohort study Journal Article

In: Acta Odontol Scand, vol. 84, pp. 218–225, 2025, ISSN: 1502-3850.

Abstract | Links | BibTeX

6.

Holthuijsen, Daniëlle D B; Rijnhart, Judith J M; Bours, Martijn J L; van Roekel, Eline H; Ueland, Per M; Breukink, Stéphanie O; Janssen-Heijnen, Maryska L G; Konsten, Joop L; Keulen, Eric T P; McCann, Adrian; Brezina, Stefanie; Gigic, Biljana; Ulrich, Cornelia M; Weijenberg, Matty P; Eussen, Simone J P M

Longitudinal associations of dietary intake with fatigue in colorectal cancer survivors up to 1 year post-treatment, and the potential mediating role of the kynurenine pathway Journal Article

In: Brain Behav Immun, vol. 126, pp. 144–159, 2025, ISSN: 1090-2139.

Abstract | Links | BibTeX

7.

Joisten, Niklas; Reuter, Marcel; Rosenberger, Friederike; Venhorst, Andreas; Kupjetz, Marie; Walzik, David; Schenk, Alexander; McCann, Adrian; Ueland, Per Magne; Meyer, Tim; Zimmer, Philipp

Exercise training restores longevity-associated tryptophan metabolite 3-hydroxyanthranilic acid levels in middle-aged adults Journal Article

In: Acta Physiol (Oxf), vol. 241, no. 5, pp. e70041, 2025, ISSN: 1748-1716.

Abstract | Links | BibTeX

8.

Jørgensen, Silje F; Braadland, Peder R; Ueland, Thor; Fraz, Mai S A; Michelsen, Annika E; Holm, Kristian; Osnes, Liv T; Trøseid, Marius; Ueland, Per Magne; Fevang, Børre; Aukrust, Pål; Hov, Johannes R

Tryptophan-kynurenine metabolites associate with inflammation and immunologic phenotypes in common variable immunodeficiency Journal Article

In: J Allergy Clin Immunol, 2025, ISSN: 1097-6825.

Abstract | Links | BibTeX

9.

Grytten, Elise; Laupsa-Borge, Johnny; Cetin, Kaya; Bohov, Pavol; Nordrehaug, Jan Erik; Skorve, Jon; Berge, Rolf K; Strand, Elin; Bjørndal, Bodil; Nygård, Ottar K; Rostrup, Espen; Mellgren, Gunnar; Dankel, Simon N

Inflammatory markers after supplementation with marine n-3 or plant n-6 PUFAs: A randomized double-blind crossover study Journal Article

In: J Lipid Res, vol. 66, no. 4, pp. 100770, 2025, ISSN: 1539-7262.

Abstract | Links | BibTeX

10.

Trollebø, Marte A; Tangvik, Randi J; Skeie, Eli; Nygård, Ottar; Eagan, Tomas M L; McCann, Adrian; Dierkes, Jutta

Metabolic profiles and malnutrition in hospitalized adults: A metabolomic cohort study Journal Article

In: JPEN J Parenter Enteral Nutr, vol. 49, no. 3, pp. 365–372, 2025, ISSN: 1941-2444.

Abstract | Links | BibTeX

11.

Valim, Valéria; Oliveira, Fabíola R; Miyamoto, Samira T; Serrano, Érica V; Balarini, Gabriela M; Tanure, Leandro A; Ferreira, Gilda A; Zandonade, Eliana; Brun, Johan G; Jonsson, Malin; Maeland, Elisabeth; Ulvik, Arve; Ueland, Per Magne; Jonsson, Roland; Mydel, Piotr M

Kynurenines and neopterin are interferon-gamma-inducible biomarkers for Sjögren's disease Journal Article

In: Rheumatology (Oxford), 2025, ISSN: 1462-0332.

Abstract | Links | BibTeX

12.

Wilson, Edward N; Umans, Jacob; Swarovski, Michelle S; Minhas, Paras S; Mendiola, Justin H; Midttun, Øivind; Ulvik, Arve; Shahid-Besanti, Marian; Linortner, Patricia; Mhatre, Siddhita D; Wang, Qian; Channappa, Divya; Corso, Nicole K; Tian, Lu; Fredericks, Carolyn A; Kerchner, Geoffrey A; Plowey, Edward D; Cholerton, Brenna; Ueland, Per M; Zabetian, Cyrus P; Gray, Nora E; Quinn, Joseph F; Montine, Thomas J; Sha, Sharon J; Longo, Frank M; Wolk, David A; Chen-Plotkin, Alice; Henderson, Victor W; Wyss-Coray, Tony; Wagner, Anthony D; Mormino, Elizabeth C; Aghaeepour, Nima; Poston, Kathleen L; Andreasson, Katrin I

Parkinson's disease is characterized by vitamin B6-dependent inflammatory kynurenine pathway dysfunction Journal Article

In: NPJ Parkinsons Dis, vol. 11, no. 1, pp. 96, 2025, ISSN: 2373-8057.

Abstract | Links | BibTeX

13.

Ramos-Rodríguez, Carla; Rojas-Gomez, Alejandra; Santos-Calderón, Luis A; Ceruelo, Santiago; Ríos, Lídia; Ueland, Per M; Fernandez-Ballart, Joan D; Salas-Huetos, Albert; Murphy, Michelle M

The l-Arginine pathway may act as a mediator in the association between impaired one-carbon metabolism and hypertension Journal Article

In: Biochimie, vol. 230, pp. 86–94, 2025, ISSN: 1638-6183.

Abstract | Links | BibTeX

14.

Svenningsson, Mads M; Svingen, Gard Ft; Ueland, Per M; Sulo, Gerhard; Bjørnestad, Espen Ø; Pedersen, Eva R; Dhar, Indu; Nilsen, Dennis W; Nygård, Ottar

Elevated plasma trimethyllysine is associated with incident atrial fibrillation Journal Article

In: Am J Prev Cardiol, vol. 21, pp. 100932, 2025, ISSN: 2666-6677.

Abstract | Links | BibTeX

15.

Damerell, Victoria; Klaassen-Dekker, Niels; Brezina, Stefanie; Ose, Jennifer; Ulvik, Arve; van Roekel, Eline H; Holowatyj, Andreana N; Baierl, Andreas; Böhm, Jürgen; Bours, Martijn J L; Brenner, Hermann; de Wilt, Johannes H W; Grady, William M; Habermann, Nina; Hoffmeister, Michael; Keski-Rahkonen, Pekka; Lin, Tengda; Schirmacher, Peter; Schrotz-King, Petra; Ulrich, Alexis B; van Duijnhoven, Fränzel J B; Warby, Christy A; Shibata, David; Toriola, Adetunji T; Figueiredo, Jane C; Siegel, Erin M; Li, Christopher I; Gsur, Andrea; Kampman, Ellen; Schneider, Martin; Ueland, Per M; Weijenberg, Matty P; Ulrich, Cornelia M; Kok, Dieuwertje E; and, Biljana Gigic

Circulating tryptophan-kynurenine pathway metabolites are associated with all-cause mortality among patients with stage I-III colorectal cancer Journal Article

In: Int J Cancer, vol. 156, no. 3, pp. 552–565, 2025, ISSN: 1097-0215.

Abstract | Links | BibTeX

16.

Fossdal, Guri; Braadland, Peder; Hov, Johannes Roksund; Husebye, Eystein Sverre; Folseraas, Trine; Ueland, Per Magne; Ulvik, Arve; Karlsen, Tom Hemming; Berge, Rolf Kristian; Vesterhus, Mette

Mitochondrial dysfunction and lipid alterations in primary sclerosing cholangitis Journal Article

In: Scand J Gastroenterol, vol. 60, no. 2, pp. 165–173, 2025, ISSN: 1502-7708.

Abstract | Links | BibTeX

17.

Walzik, David; Joisten, Niklas; Schenk, Alexander; Trebing, Sina; Schaaf, Kirill; Metcalfe, Alan J; Spiliopoulou, Polyxeni; Hiefner, Johanna; McCann, Adrian; Watzl, Carsten; Ueland, Per Magne; Gehlert, Sebastian; Worthmann, Anna; Brenner, Charles; Zimmer, Philipp

Acute exercise boosts NAD metabolism of human peripheral blood mononuclear cells Journal Article

In: Brain Behav Immun, vol. 123, pp. 1011–1023, 2025, ISSN: 1090-2139.

Abstract | Links | BibTeX

18.

Santos-Calderón, Luis A; Cavallé-Busquets, Pere; Ramos-Rodríguez, Carla; Grifoll, Carme; Rojas-Gómez, Alejandra; Ballesteros, Mónica; Ueland, Per M; Murphy, Michelle M

Folate and cobalamin status, indicators, modulators, interactions, and reference ranges from early pregnancy until birth: the Reus-Tarragona birth cohort study Journal Article

In: Am J Clin Nutr, vol. 120, no. 5, pp. 1269–1283, 2024, ISSN: 1938-3207.

Abstract | Links | BibTeX

19.

Anfinsen, Åslaug Matre; Myklebust, Vilde Haugen; Johannesen, Christina Osland; Christensen, Jacob Juel; Laupsa-Borge, Johnny; Dierkes, Jutta; Nygård, Ottar; McCann, Adrian; Rosendahl-Riise, Hanne; Lysne, Vegard

Serum concentrations of lipids, ketones and acylcarnitines during the postprandial and fasting state: the Postprandial Metabolism (PoMet) study in healthy young adults Journal Article

In: Br J Nutr, vol. 132, no. 7, pp. 851–861, 2024, ISSN: 1475-2662.

Abstract | Links | BibTeX

20.

Holthuijsen, Daniëlle D B; van Roekel, Eline H; Bours, Martijn J L; Ueland, Per M; Breukink, Stéphanie O; Janssen-Heijnen, Maryska L G; Keulen, Eric T P; Brezina, Stefanie; Gigic, Biljana; Peoples, Anita R; Ulrich, Cornelia M; Ulvik, Arve; Weijenberg, Matty P; Eussen, Simone J P M

Longitudinal associations of plasma kynurenines and ratios with fatigue and quality of life in colorectal cancer survivors up to 12 months post-treatment Journal Article

In: Int J Cancer, vol. 155, no. 7, pp. 1172–1190, 2024, ISSN: 1097-0215.

Abstract | Links | BibTeX

562 entries « 1 of 29 »

Olink Proteomics

Please fill out the fields below (*required).
We will respond to you ASAP.
Thank you!

Customized analyses

Please fill out the fields below (*required).
We will reply to you soon for a detailed project discussion.
Thank you for reaching out to Bevital!

Mix-and-Match

Please fill out the fields below (*required).
We will respond to you as soon as possible.

Ready-to-Run

Please fill out the fields below (*required).
We will respond ASAP.
Thank you!

Thanks for joining!

Get updates about new method developments, publications and comming events.