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Abstract Choline is an essential nutrient, but is also
formed by de novo synthesis. Choline and its derivatives
serve as components of structural lipoproteins, blood and
membrane lipids, and as a precursor of the neurotransmitter
acetylcholine. Pre-and postnatal choline availability is
important for neurodevelopment in rodents. Choline is
oxidized to betaine that serves as an osmoregulator and is a
substrate in the betaine–homocysteine methyltransferase
reaction, which links choline and betaine to the folate-
dependent one-carbon metabolism. Choline and betaine are
important sources of one-carbon units, in particular, during
folate deficiency. Choline or betaine supplementation in
humans reduces concentration of total homocysteine
(tHcy), and plasma betaine is a strong predictor of plasma
tHcy in individuals with low plasma concentration of
folate and other B vitamins (B2, B6, and B12) in
combination TT genotype of the methylenetetrahydrofolate
reductase 677 C->T polymorphism. The link to one-carbon
metabolism and the recent availability of food composition
data have motivated studies on choline and betaine as risk
factors of chronic diseases previously studied in relation to

folate and homocysteine status. High intake and plasma
level of choline in the mother seems to afford reduced risk
of neural tube defects. Intake of choline and betaine shows
no consistent relation to cancer or cardiovascular risk or
risk factors, whereas an unfavorable cardiovascular risk
factor profile was associated with high choline and low
betaine concentrations in plasma. Thus, choline and betaine
showed opposite relations with key components of meta-
bolic syndrome, suggesting a disruption of mitochondrial
choline oxidation to betaine as part of the mitochondrial
dysfunction in metabolic syndrome.

Abbreviations
PC Phosphatidylcholine
PE Phosphatidylethanolamine
PEMT Phosphatidylethanolamine

N-methyltransferase
BHMT Betaine-homocysteine methyltransferase
tHcy Total homocysteine
PML tHcy Post-methionine-load tHcy
NAFLD Nonalcoholic fatty liver disease

Introduction

Choline and betaine are metabolically related quaternary
ammonium compounds (Fig. 1). They are metabolically
linked to both lipid and folate-dependent one-carbon
metabolism, and studies in animals and humans have
provided results suggesting their involvement in neuro-
development and the pathogenesis of various chronic
diseases and points to a role in risk assessment and disease
prevention. This review covers key aspects of this growing
research field, from biochemistry and experimental inves-
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tigations to epidemiological studies, with emphasis on
recent data relevant to human disease.

Biochemistry

Choline and betaine are obtained from diet or by synthesis
de novo in tissues. Phosphatidylcholine (PC) is a
phospholipid and the most abundant choline species,
which accounts for 95% of the total choline pool in
mammalian tissue. It is synthesized de novo from
phosphatidylethanolamine (PE), a reaction catalyzed by the
S-adenosylmethionine-dependent enzyme phosphatidyletha-
nolamine N-methyltransferase (PEMT). The remaining 5%
includes choline, phosphocholine, glycerophosphocholine,
cytidine 5-diphosphocholine, and acetylcholine (Ueland et
al. 2005; Zeisel 2000). Their metabolic relationships are
depicted in Fig. 2.

Synthesis of PC catalyzed by PEMT consumes 3
molecules of S-adenosylmethionine and generates 3 mole-
cules of S-adenosylhomocysteine per molecule PC formed.
Recent animal studies on PEMT knockout mouse and
estimates of methyl balance in humans suggest that PC
synthesis (and not creatine synthesis) is quantitatively the
most important S-adenosylmethionine-dependent transme-
thylation reaction and therefore the most important source
of homocysteine in mammals (Stead et al. 2006). In the
liver and kidney, choline is oxidized to betaine. This is a
two-step enzymic reaction in which choline is first
converted to betaine aldehyde, a reaction catalyzed by the
mitochondrial choline oxidase (choline dehydrogenase, EC
1.1.99.1), and betaine aldehyde is further oxidized in the
mitochondria or cytoplasm to betaine by betaine aldehyde
dehydrogenase (EC 1.1.1.8) (Lin and Wu 1986). Formation
of betaine links choline to folate-mediated one-carbon
metabolism, because betaine serves as a methyl donor in
the betaine-homocysteine methyltransferase (BHMT) reac-
tion (Fig. 2). In the liver and kidney, BHMT catalyzes the

conversion of homocysteine to methionine. Homocysteine
remethylation is also catalyzed by the ubiquitous methio-
nine synthase, which requires 5-methyltetrahydrofolate as
methyl donor and cobalamin as cofactor (Ueland et al.
2005). During choline deprivation leading to low betaine
content, more 5-methyltetrahydrofolate is used for homo-
cysteine remethylation, thereby increasing folate require-
ments. Conversely, during folate deficiency, methyl groups
from choline and betaine are used, thereby increasing
choline requirements. Thus, 5-methyltetrahydrofolate and
choline/betaine have been regarded as fungible sources of
methyl groups (Kim et al. 1994; VarelaMoreiras et al. 1992).

Metabolic ramifications

Choline and betaine have ramifications to processes vital to
cellular structure and function. In cholinergic neurons, choline
is acetylated to form the neurotransmitter acetylcholine.
Choline is a precursor for the synthesis of membrane
phospholipids, including PC, which accounts for about 50%
of phospholipids in mammalian membranes and thereby
affect signalling and transport across membranes (Zeisel
2006b). PC, derived from both phosphatidylcholine biosyn-
thetic pathways (the cytidine 5′-diphosphocholine and the PE
methylation pathways), is involved in very low density
lipoprotein (VLDL) assembly and secretion from the liver
(Vance 2008). Choline and betaine promote homocysteine
remethylation to methionine and thereby affect the concen-
tration of the universal methyl donor S-adenosylmethionine.
Altered concentration of S-adenosylmethionine may influ-
ence DNA methylation at cytosine bases that are followed
by a guanosine (5-CpG-3 sites) via change in methyl group
availability and may thereby influence gene transcription,
genomic imprinting, and genomic stability. Increased DNA
methylation usually leads to gene silencing and reduced gene
expression (Robertson 2005). Animal experiments have
demonstrated changes in global and gene-specific DNA
methylation following altered choline intake (Christman et
al. 1993; Niculescu et al. 2006), and in mouse models during
gestation, consumption of diets abundant in methyl group
donors and cofactors (choline, betaine, methionine, folic
acid, and vitamin B12) affects the phenotype of offspring in a
way that relates to hypermethylation of the relevant genes
(Niculescu et al. 2006; Waterland et al. 2006; Waterland and
Jirtle 2003).

Betaine and osmoregulation

The concentrations of betaine in tissue are in the millimolar
range and orders of magnitude higher than in plasma (Slow
et al. 2009). Intracellular betaine serves as an osmolyte that
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regulates cell volume and thereby tissue integrity (Lang
2007; Schliess and Haussinger 2002). It also serves as a
“compensatory” or “counteracting” solute that stabilizes
proteins and is particularly effective at countering the
denaturing effect of urea (Venkatesu et al. 2009). These
functions of betaine have been most thoroughly studied in
renal medulla, where cells are normally exposed to high
extracellular osmolarity during normal operation of the
urinary concentrating mechanism (Neuhofer and Beck
2005). Cells in other tissues (Lang 2007), such as liver
(Haussinger 2004; Weik et al. 1998; Zhang et al. 1996),
brain (Olsen et al. 2005), intestine (Kettunen et al. 2001;
Lim et al. 2007), and skin (Warskulat et al. 2004), may also
be exposed to hyperosmolality, albeit to a lesser extent than
renal medulla, and they also accumulate methylamines
serving as organic osmolytes, including betaine. Betaine
has been shown to protect preimplantation mouse embryos
against increased osmolarity in vitro (Anas et al. 2008).

Osmolyte-mediated volume regulation is under tight control
(Burg and Ferraris 2008; Haussinger 2004). Cellular
accumulation of betaine is mediated by the osmoregulated
betaine/γ-aminobutyric acid (GABA) transporter, designat-
ed BGT-1 (Yamauchi et al. 1992), which is expressed in
kidneys (Kempson and Montrose 2004) and other tissues
(Olsen et al. 2005; Petronini et al. 2000; Warskulat et al.
2008). Other osmoregulated mammalian betaine trans-
porters exist that are not specific to betaine (Anas et al.
2008; Burg and Ferraris 2008). BHMT expression in kidney
and liver is decreased during high sodium chloride intake
(Delgado-Reyes and Garrow 2005), and osmoregulation of
BHMT (Schafer et al. 2007) may control the partitioning of
betaine between its use as a methyl donor and its
accumulation as an osmoprotectant. Betaine synthesis from
choline is not affected by hypertonicity (Burg and Ferraris
2008) but seems to be controlled by the choline transport
into the mitochondria (O’Donoghue et al. 2009).
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PC phosphatidylcholine, PE
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Ueland et al. (2005)
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Homocysteine status in humans

The function of several B vitamins related to one-carbon
metabolism converges on homocysteine, and plasma total
homocysteine (tHcy) serves as a useful probe of changes in
overall one-carbon metabolism in clinical and epidemio-
logical studies (Hustad et al. 2007). High doses (6 g/day
and higher) of betaine, alone or in combination with B
vitamins, have been used for years to treat patients with
homocystinuria (Ogier de Baulny et al. 1998; Yap 2003).
Such treatment reduces plasma tHcy and partly corrects
other biochemical abnormalities but also improves the
clinical condition. Betaine supplementation reduces the
increase in tHcy after methionine loading [post-methio-
nine-load (PML) tHcy] but not fasting tHcy in renal
patients who are folate and vitamin B6 replete (McGregor
et al. 2002). In healthy individuals, supplementation with
betaine (Alfthan et al. 2004; Olthof et al. 2003; Olthof and
Verhoef 2005; Schwab et al. 2002) or phosphatidylcholine
(Olthof et al. 2005a) reduces fasting tHcy (by 20%) and
PML tHcy (by 29–40%). Folic acid exerts a similar effect
on fasting tHcy but does not affect PML tHcy. Betaine
seems be more efficient and acts faster than phosphatidyl-
choline, probably because phosphatidylcholine needs to be
metabolized to betaine to enhance homocysteine remethy-
lation (Olthof et al. 2005a). Thus, oral betaine or choline, at
doses similar to the amounts found in some diets, have a
homocysteine-lowering effect.

PML tHcy is inversely associated with plasma betaine in
cardiovascular patients. This effect is attenuated after the
patients have been supplemented with B vitamins (folate,
vitamin B6 and cobalamin) (Holm et al. 2004). In a large
study on 500 healthy individuals (Holm et al. 2005), plasma
betaine was a stronger predictor of the PML tHcy (mean
change in tHcy of 7.2 μmol/L across the extreme betaine
quartiles) than folate, cobalamin, and vitamin B6. The
inverse association between the PML tHcy and plasma
betaine was strongest at low folate. Smaller studies on the
relationship between fasting tHcy and betaine provided
inconsistent results, demonstrating weak or no associations
(Allen et al. 1993; Lever et al. 2005; McGregor et al. 2001;
Schwahn et al. 2004). A large study of 10,700 healthy
individuals allowed the investigation of betaine as a
predictor of fasting tHcy in strata according to folate and
vitamins B2, B6, and B12 status and methylenetetrahydro-
folate reductase (MTHFR) genotype. Betaine was a strong
determinant of fasting plasma tHcy in individuals with low
serum folate and the MTHFR TT genotype. The association
was further strengthened at low levels of the other B
vitamins. Thus, in individuals with the combination of
serum folate in the lowest quartile, low vitamin B2, B6, and
B12 status, and the MTHFR TT genotype, the difference in
tHcy across extreme plasma betaine quartiles was, amaz-

ingly, 8.8 µmol/L. Thus, betaine takes over as a methyl
donor and sustains methionine synthesis under conditions
of impaired B-vitamin status (Holm et al. 2007).

Dietary requirements and intake

Dietary sources of choline are eggs, beef, pork, liver,
soybean, and wheat germ (Zeisel et al. 2003), whereas
betaine is obtained from wheat bran, wheat germ, and
spinach (Sakamoto et al. 2002; Slow et al. 2005). Recently,
a comprehensive database on the content of choline and
betaine in common foods was compiled (http://www.nal.
usda.gov/fnic/foodcomp/Data/Choline/Choline.html). Cho-
line intake by humans on ad libitum diets averages 8.4 mg/kg
per day and 6.7 mg/kg per day for men and women,
respectively (Fischer et al. 2005), which equals the
recommended daily intake of 7 mg/kg per day (550 mg/d
for men and 425 mg/d for women) set in 1998 by the
Institute of Medicine (Yates et al. 1998). The intake by some
women is below this value (Fischer et al. 2005). A
recommended daily intake has not been established for
betaine, but the recently estimated dietary intake ranges from
100–300 mg/d (Bidulescu et al. 2007; Chiuve et al. 2007;
Cho et al. 2006; Detopoulou et al. 2008; Fischer et al. 2005).

De novo biosynthesis of phosphatidylcholine catalyzed
by PEMT in the liver is a significant source of choline
relative to dietary intake. The importance of the PEMT
pathway is demonstrated by animal experiments demon-
strating low choline pool in the liver of Pemt -/- mice fed
adequate amounts of choline (Zhu et al. 2003). The PEMT
gene has multiple estrogen-responsive elements, and in-
creased PEMT transcription has been demonstrated in
human hepatocytes exposed to 17-β-estradiol (Resseguie
et al. 2007). The estrogen-dependent PEMT increases the
capacity for the endogenous synthesis of PC in premeno-
pausal women, which may become paramount under
conditions of increased requirements for choline, such as
pregnancy and lactation, and explain why premenopausal
women are relatively resistant to choline deficiency (Zeisel
2009b).

The choline and betaine intake estimates based on the
Food-Frequency Questionnaire (FFQ) have recently been
validated by investigating the relationship between intake
and plasma tHcy in 1,960 participants from the Framing-
ham Offspring Study (Cho et al. 2006). High intakes of
choline and betaine were related to low tHcy. Notably, the
inverse associations were most pronounced in individuals
with low folate intake and in individuals consuming
alcohol, which is in line with observation based on
measurement of plasma concentrations of betaine and tHcy
(Holm et al. 2007), demonstrating that choline, betaine, and
folate are interchangeable sources of one-carbon units.
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In a population of middle-aged and elderly men and
women recruited from an area without folic-acid fortifica-
tion and low folate intake (Norway), plasma free choline
showed a positive relationship to intake of eggs and
cholesterol but not to consumption of other food items rich
in choline. Plasma betaine was positively related to intake
of high-fiber bread and nutrients such as complex carbohy-
drates, fiber, folate, and thiamine. Thus, only a few food
items are major determinants of plasma choline and betaine
(Konstantinova et al. 2008b). Notably, betaine was nega-
tively associated with a Western dietary pattern with a high
loading for meat, pizza, sugar, and fat and was positively
associated with total energy intake, whereas choline was
not significantly associated with any identified dietary
patterns or total energy intake (Konstantinova et al. 2008b)

Choline deficiency

Dietary deficiency of choline in humans causes fatty liver
(Buchman et al. 1995) and liver (Zeisel 1991) and muscle
(Fischer et al. 2007) damage. Fatty liver may reflect
impaired export of triacylglycerol from the liver, whereas
release of liver and muscle proteins into blood suggesting
tissue damage is attributable to induction of apoptosis and
muscle membrane fragility by choline deficiency (daCosta
et al. 2004; daCosta et al. 2006; Fischer et al. 2007). As
expected, choline deficiency caused an increase in plasma
tHcy (da Costa et al. 2005), which, however, was uniform
(20%) and unrelated to signs of organ damage (Fischer et
al. 2007). The amount of choline required to maintain
normal organ function showed large interindividual vari-
ability. Some individuals required more than the recom-
mended adequate intake (AI) (550 mg/day), whereas others
required <50 mg/day. Signs of organ dysfunction developed
less commonly in premenopausal women than in men and
postmenopausal women, probably because of upregulation
of endogenous PC synthesis by estrogen (Fischer et al.
2007). Common genetic polymorphisms in genes
encoding for the phosphatidylethanolamine N-methyl-
transferase (PEMT; rs12325817), choline dehydrogenase
(CHDH; rs9001 and rs12676), and 5,10-methylenetetra-
hydrofolate dehydrogenase (MTHFD1; rs2236225) were
strongly related to the occurrence of organ damage (da
Costa et al. 2006; Kohlmeier et al. 2005).

Liver steatosis

Deletion of the PEMT gene in Pemt -/- mice caused low
level of PC in the liver, but these animals had otherwise a
normal phenotype with no dyslipidemia and liver patholo-
gy. When fed a choline-deficient diet, they rapidly

developed steatohepatitis and drastic reduction in liver PC
combined with extremely low concentrations of triacylgly-
cerol and cholesterol in plasma (Vance et al. 2007). These
observations demonstrate the importance of the PEMT
pathway to provide PC under conditions of insufficient
dietary choline and could be explained by the requirement
of PC for normal VLDL assembly and secretion. Chronic
alcohol consumption in rat causes liver steatosis. The
concurrent biochemical changes include impaired PC
formation via the PEMT pathway and reduced VLDL
secretion (Kharbanda et al. 2007). Betaine is known to
ameliorate the adverse effects of alcohol on the liver, in
particular, fatty liver (Barak et al. 1997; Barak et al. 1996;
Barak and Tuma 1983). Notably, dietary betaine supple-
mentation of rats given alcohol enhanced the synthesis of
PC catalyzed by PEMT, normalized VLDL secretion, and
prevented the development of steatosis (Kharbanda et al.
2007; Kharbanda et al. 2009). The mechanism may involve
lowering homocysteine and stimulating methionine synthe-
sis via the BHMT pathway, thereby increasing the
S-adenosylmethionine/S-adenosylhomocysteine ratio, which
leads to PEMT activation (Barak et al. 2003; Purohit et al.
2007). These experimental results point to a possible role of
betaine administration in treatments of hepatic steatosis.

Nonalcoholic fatty liver disease (NAFLD) is the most
common liver disease and is associated with all components
of the metabolic syndrome (Kotronen and Yki-Jarvinen
2008). Treatment of NAFLD with betaine has been evaluated
in four human studies (Purohit et al. 2007), including a short-
term, randomized, double-blind trial including 191 patients
(Miglio et al. 2000). Improved liver function, including
reduction of aminotransferases and liver steatosis, were
observed in a significant portion of the patients in most,
but not all (Abdelmalek et al. 2009), studies. A common
genetic variant of PEMT characterized by an amino acid
substitution (V175M) and reduced enzyme activity was more
frequent (67.9%) in patients with NAFLD (n=28) than in
healthy control (40.7%; n=59) (Song et al. 2005). Although
based on a small number of patients, this observation
emphasizes the importance of impaired PEMT pathway in
the pathogenesis of fatty liver in humans. Notably, the
incidence of NAFLD is lower in premenopausal women than
in men or postmenopausal women, which could be related to
a protective effect from induced expression of PEMT by
estrogens (Zeisel 2007).

Pregnancy

During pregnancy, there is a high need for choline, which is
transported across a concentration gradient from the mother
to the fetus (Sweiry and Yudilevich 1985). The circulating
concentrations of free choline in the fetus and newborn are
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six- to sevenfold higher than in the mother (Ozarda Ilcol et
al. 2002; Zeisel et al. 1980), who actually may become
choline depleted (Zeisel et al. 1995). The increased need
concurs with stimulation of de novo choline synthesis by
estradiol, which increases progressively during pregnancy
(Adeyemo and Jeyakumar 1993). During pregnancy, cho-
line and betaine in plasma show some unique features
compared with concentrations of other metabolites and
vitamins related to one-carbon metabolism (tHcy, folate,
and cobalamin). Plasma choline shows no relationship to
tHcy and increases throughout pregnancy (whereas other
metabolites decline) (VelzingAarts et al. 2005), which may
reflect maintenance of adequate blood choline concentra-
tions to facilitate active transport to the fetus. Betaine
became a gradually stronger and folate a weaker predictor
of tHcy during the course of pregnancy (VelzingAarts et al.
2005); in pregnant women (from Seychelles) with high
choline intake (from eggs) and no folic acid supplementa-
tion, betaine was a tHcy predictor only in women low in
methionine (Wallace et al. 2008). Thus, betaine may serve
as a source of one-carbon units when other sources (folate,
methionine) become limited. At delivery, maternal (Molloy
et al. 2005) and cord (Braekke et al. 2007) plasma choline
shows a positive relationship to tHcy (which contrasts to
the negative relationship with folate and vitamin B12),
possibly because of enhanced homocysteine formation
during upregulation of PC synthesis (Stead et al. 2006).
Cord plasma concentration of free choline was threefold
higher than maternal plasma choline, and there was no
relationship between concentrations in the fetal and
maternal compartments. For other one-carbon metabolites,
concentration gradients were less dramatic, and there was a
positive relationship between concentrations in cord and
maternal plasma (Molloy et al. 2005). These observations
are in agreement with an active transport mechanism
delivering substantial amounts of choline to the fetus; after
birth, the choline decreases and approaches adult levels
within days (McMahon and Farrell 1985).

Choline and animal brain development and function

Choline is transported across the blood–brain barrier by a
specific carrier (Cornford et al. 1978; Lockman and Allen
2002), and choline supplementation increases the brain
content of choline and choline esters (Garner et al. 1995).
The neonatal brain has a high-capacity choline transporter
(Cornford et al. 1982) and very active form of PEMT
(Blusztajn et al. 1985), factors that favor delivery of high
amounts of choline to the developing brain. There is a large
body of experimental data suggesting that choline deficien-
cy or supplementation during the second half of gestation
(E 11–17) and later in the newborn affects neurodevelop-

ment in rodents. The offsprings of choline-supplemented
pregnant rats or mice have improved visuospatial and
auditory memory or performance in behavioral test,
whereas choline deficiency seems to have the opposite
effect. Prenatal and early postnatal choline supplementation
also prevents age-related memory decline and protects
against the adverse effects of some neurotoxic agents
(McCann et al. 2006; Zeisel 2006c), including alcohol
(Thomas et al. 2009), in offsprings. Notably, inhibition of
choline uptake and metabolism causes neural tube defects
(NTD) in mouse embryo in vitro (Fisher et al. 2002).

Increased levels of brain phosphatides and synaptic
proteins, improved cognition, and enhanced neurotransmitter
release was observed in several animal models after admin-
istration of choline in combination with uridine and docosa-
hexaenoic acid, i.e., precursors of phosphatide biosynthesis.
These effects were markedly enhanced when animals received
all three compounds together and have been explained by
increasing the substrate saturation of low-affinity enzymes
involved (Wurtman et al. 2009). Experimental studies suggest
that cognitive dysfunction in folate-deficient rats was not
associated with plasma homocysteine or brain content of S-
adenosylmethionine or S-adenosylhomocysteine but related
to depletion of PC in the brain; both cognitive impairment
and low PC were prevented by methionine supplementation
(Troen et al. 2008).

Electrophysiological, biochemical, and morphological
studies have been carried out to elucidate the mechanisms
behind the role of prenatal choline in neurodevelopment,
but the plethora of effects does not point to a unifying
hypothesis. Prenatal choline availability affects fetal hippo-
campal cell proliferation, apoptosis, and differentiation.
Choline supplementation during pregnancy enhances hip-
pocampal neurogenesis, increases the size of cholinergic
neurons, and enhances acetylcholine storage and release in
the basal forebrain in adulthood, elevates brain concen-
trations of neurotrophins and growth factors, enhances
long-term potentiation and depolarization-induced mitogen-
activated signal transmission in postnatal hippocampus, and
changes hippocampal and cerebral cortical gene expression
during postnatal development and in adulthood (McCann et
al. 2006; Zeisel 2006c). The view prevails that the change in
DNA methylation, gene expression, and genomic imprinting
rather than a change in acetylcholine neurotransmission
explains the effects of choline on neurodevelopment and
function (McCann et al. 2006; Zeisel 2009a).

Choline and the human central nervous system
development and function

Data on choline and the function of the central nervous
system (CNS) in humans are sparse. The elderly (Cohen et
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al. 1995) or patients with Alzheimer’s disease (Nitsch et al.
1992) have reduced levels of free choline and PC in the
brain. Some (Alvarez et al. 1997; Ladd et al. 1993; Levy
1982; Little et al. 1985; Sitaram et al. 1978; Spiers et al.
1996) but no all (Brinkman et al. 1982; Drachman et al.
1982; Fitten et al. 1990; Harris et al. 1983; Mohs and Davis
1980; Weinstein et al. 1991) studies including healthy or
demented individuals reported improved performance on
memory and learning tasks following supplementation with
choline, CDP-choline, or PC. A limited number of
individuals (n=9-95) was included in these studies. A
placebo-controlled study on the combination of choline,
uridine, and docosahexaenoic in 212 patients with Alz-
heimer’s disease demonstrated improved memory in
patients with mild disease (Wurtman et al. 2009). These
observations should be confirmed in larger trials.

Administration of citicoline, CDP-choline, increases
phosphatidylcholine concentration in the brain and inhibits
neuronal phospholipid membrane breakdown and enhances
repair of the neuronal membrane after neuronal injury and
ischemia (Saver 2008). A recent meta-analysis of ten trials
enrolling 2,279 patients with stroke suggests that patients
receiving citicoline had substantially reduced frequencies of
death and disability (Saver 2008).

In a recent large population-based study involving 5,918
men and women, low plasma concentrations of free choline
were significantly associated with high anxiety levels. No
relationship was observed between choline and depression
(Bjelland et al. 2009). Whether these results reflect an effect
of anxiety on choline level and intake or a predisposition to
anxiety in subjects with low choline status cannot be
ascertained from a study with a cross-sectional design.

The relationship between periconceptional choline intake
and NTD in pregnant women recruited from California
between 1989 and 1991 was investigated by Shaw and
colleagues (2004). Women in the highest quartile of choline
intake had a risk reduction of about 50% compared with
those in the lowest quartile. High betaine intake also
seemed to be association with risk reduction, which,
however, was attenuated after adjustment for covariates.
This is not surprising given that the BHMT pathway does
not appear to be active in the postimplantation embryo and
is only found in the early fetus, a time when neural tube
closure is nearly complete (Fisher et al. 2002). Shaw and
colleagues (2009) recently published an investigation of the
association between total choline (mainly PC) in midpreg-
nancy serum specimens and NTD risk. The specimens were
collected in California from 2003 to 2005, i.e., after
implementation of mandatory folic acid fortification (Shaw
et al. 2009). Compared with the 25–75 percentiles, women
with low choline <25 percentile had increased risk [odds
ratio (OR) = 1.8] and those with high choline >75
percentile had decreased risk (OR=0.4). No other B

vitamins were associated with NTD risk, which may reflect
widespread vitamins supplement use and vitamin fortifica-
tion of food.

The first study on maternal choline status and intelli-
gence in their children was recently published by Signore et
al. (2008). Free and total choline (mainly PC) in maternal
serum at gestational weeks 16–18, 24–26, 30–32, and 36–
38 and in cord blood were determined in 404 maternal–
child pairs. Intelligence (IQ) scores at the age of 5 years
were investigated in relationship to free and total choline in
maternal and cord blood by linear regression analyses, and
no associations were found.

Cardiovascular disease and metabolic syndrome

Studies based on mice models of atherosclerosis point to
several mechanisms connecting choline and betaine to
atherogenesis. In apolipoprotein E (apoE)-deficient mice,
betaine administration had a dose-dependent antiathero-
genic effect and reduced aortic inflammatory response.
These beneficial effects were explained by a choline-
spearing effect, increasing PC available for VLDL assem-
bly and section, and seemed to outweigh a marked
exacerbation of hyperlipidemia in mice given betaine (Lv
et al. 2009). In another study on LDL-receptor (Ldlr-/-)
knockout mice fed high-fat/high-cholesterol diet, lack of
PEMT (in Pemt -/- /Ldlr -/- mice) markedly attenuated
atherosclerosis by 80%. The effect was attributable to
decreased plasma concentration of apoB-containing lip-
oproteins, and the atheroprotective lipid profile was
explained by decreased synthesis and increased clearance
of VLDL particles with low content of PC (Zhao et al.
2009).

The homocysteine-lowering effect of choline and betaine
has motivated investigations in humans of the possible
relationship of cardiovascular disease and risk factors with
intake or plasma concentrations of choline and betaine.
High doses of betaine have been reported to increase
plasma LDL cholesterol (Olthof et al. 2005b), which might
offset the health benefit from homocysteine reduction, but
the significance of the lipid effects has been questioned
(Zeisel 2006a). Short- or long-term betaine supplementation
does not improve flow-mediated vasodilation, a marker of
endothelial function, despite reduction of tHcy (Olthof et al.
2006; Olthof and Verhoef 2005). One study demonstrated
impaired vasodilation in individuals given betaine and no
effect from low doses of folic acid and enhanced vasodi-
lation in individuals given folic acid at doses exceeding
those required to obtain maximal homocysteine reduction,
suggesting improved endothelial function by mechanisms
independent of homocysteine (Moat et al. 2006). A recent
study on 3,000 healthy Greek men and women demonstrat-
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ed low plasma levels of inflammatory markers, such as C-
reactive protein, interleukin-6, and tumor necrosis factor-
alfa, in individuals with high intake of choline and betaine
(Detopoulou et al. 2008). Because inflammation plays a
role in atherogenesis, high intake of choline and betaine
may protect against cardiovascular disease. However, two
recent large prospective studies, based on the participants in
the Dutch PROSPECT–EPIC cohort (Dalmeijer et al. 2007)
and in the Atherosclerosis Risk in Communities (ARIC)
study (Bidulescu et al. 2007), respectively, demonstrated no
association between intake of choline and betaine and
cardiovascular disease. Whether these null findings are
related to the large measurement error of intake estimates
for micronutrients such choline and betaine (Bidulescu et
al. 2009) should be addressed in future studies.

Plasma choline and betaine were investigated in relation
to life style and cardiovascular risk factors in 7,074 healthy
men and women (Konstantinova et al. 2008a). Choline
showed a positive relationship to serum triglycerides,
glucose, body mass index (BMI), body fat, and waist
circumference, whereas plasma betaine was inversely
related to these factors in addition to non-high-density-
lipoprotein (non-HDL) cholesterol, and systolic and dia-
stolic blood pressure, and positively related to HDL
cholesterol. Thus, an unfavorable cardiovascular risk factor
profile is associated with high choline and low betaine
concentrations, and choline and betaine show opposite
relationships with key components of metabolic syndrome.
In the same cohort, neither plasma choline nor betaine was
positively associated with consumption of animal products,
fruit, or vegetables, but each was positively associated with
the intake of specific food items such as eggs (choline) and
bread (betaine) (Konstantinova et al. 2008b). These
observations do not support the contention that the link
between plasma choline and betaine and the metabolic
syndrome reflects dietary intake. We hypothesized that the
divergent associations of the substrate (choline) and product
(betaine) of mitochondrial choline oxidation reflect disrup-
tion of this pathway as part of the mitochondrial dysfunc-
tion that prevails in metabolic syndrome (Konstantinova et
al. 2008a).

Free choline in blood has recently been recognized as a
potentially useful marker for diagnosis and risk stratifica-
tion of ischemic heart disease, especially if cardiac
troponins are negative on admission (Apple et al. 2005).
Choline in plasma (Adamczyk et al. 2006) or serum
(LeLeiko et al. 2009) has been associated with early events
related to tissue ischemia, whereas whole-blood choline
predicts events related to coronary plaque instability (such
as myocardial infarction) during follow-up (Danne et al.
2007), particularly in patients with low to moderate risk
(Mockel et al. 2008). The reported associations between
ischemic heart diseases and choline in plasma versus whole

blood are complex and somewhat inconsistent (Body et al.
2009) and have been explained by activation of phospho-
lipases A2 and D in ischemic heart tissue and activated
blood cells, leading to release of choline into plasma and
secondary uptake into blood cells (Danne et al. 2007).
Diagnostic performance of choline in blood is an important
subject for future research, which must address issues such
as possible interference from smoking (which reduces
plasma choline (Konstantinova et al. 2008a)), from post-
prandial increase in choline (Konstantinova et al. 2008a),
changes in choline metabolism in metabolic syndrome
(Konstantinova et al. 2008a), specificity and sensitivity in
various patient categories, and reliability coefficient as
obtained by longitudinal measurements.

Cancer

Aberrations in choline phospholipid metabolism have been
demonstrated in a variety of cancers, including breast
(Morse et al. 2009), prostate, and brain (Glunde and
Serkova 2006). These changes are characterized by elevat-
ed phosphocholine and total choline-containing compounds
and are explained by elevated choline uptake and increased
choline kinase and phospholipase C and D activities in
cancer cells. Altered choline phospholipid metabolism
detected by noninvasive magnetic resonance spectroscopy
is used as an endogenous biomarker of cancer (Glunde and
Serkova 2006), and enzymes involved in choline metabo-
lism, such as choline kinase (Janardhan et al. 2006) and
phospholipase D (Huang and Frohman 2007), have been
suggested as new therapeutic targets. Dietary choline
deficiency is associated with an increased incidence of
spontaneous liver cancer and increased sensitivity to
carcinogenic chemicals in rats. Suggested mechanisms
include liver damage and regeneration, decreased DNA
methylation and impaired DNA repair, increased oxidative
stress, and activation of protein kinase C (Zeisel and
Blusztajn 1994). A recent study shows that increasing
maternal dietary choline from a deficient to an adequate
intake during the second half of pregnancy in rats slows
down the growth of mammary tumors induced later in life
by a carcinogen in female offspring. This beneficial effect
was associated with overexpression of genes that confer
favorable prognosis in human cancers and underexpression
of those associated with aggressive disease. Choline may
modulate DNA methylation of developing mammary cells,
thereby creating an epigenetic setting affecting tumor
growth (Kovacheva et al. 2009).

There are only a few studies on intake of choline and
betaine and cancer risk in humans, because food composi-
tion data have not been available until recently. In a large
population-based study (Xu et al. 2008b), breast cancer risk
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was reduced by 24% among women with choline intake in
the upper quintile and increased in women homozygous for
the variant allele of PEMT rs12325817, a single nucleotide
polymorphism (SNP) assumed to alter estrogen responsive-
ness of the promoter of the choline-synthesizing enzyme,
PEMT (Xu et al. 2008b). Investigations among women in
the Nurses’ Health Studies demonstrated no relationship
between breast cancer risk and intake of choline or betaine
(Cho et al. 2007b), whereas risk of distal colorectal
adenomas was inversely and weakly associated with
betaine intake and positively associated with choline intake
(Cho et al. 2007a). The positive association with choline
was strongest among women with low folate intake or high
alcohol consumption, an observation that supports the
involvement of one-carbon metabolism. The association
may reflect stimulation of growth of established adenomas
by choline or other dietary factors present in food rich in
choline (Cho et al. 2007a). Likewise, results of experimen-
tal studies and recent intervention trials with folic acid
suggest that folate deficiency promotes carcinogenesis,
whereas folate enhances the growth of established neo-
plasias (Kim 2008). Secondary analyses of the Aspirin/
Folate Polyp Prevention Study demonstrated that individ-
uals treated with folic acid had an increased risk of prostate
cancer (Figueiredo et al. 2009). Notably, in the Northern
Sweden Health and Disease Cohort, doubling of plasma
choline was associated with 46% increase of prostate cancer
risk (Johansson et al. 2009). These findings point to a
possible role of one-carbon metabolism in growth enhance-
ment of prostate cancer.

Common polymorphism in the BHMT gene and disease
risk

A common single polymorphism (c.716G>A, also know as
742G>A) in the BHMT gene was first reported by Park and
Garrow (1999). BHMT c.716G>A was found not to be
related to plasma tHcy concentration (Fredriksen et al.
2007; Heil et al. 2000; Morin et al. 2003; Weisberg et al.
2003), but a recent large epidemiological study demon-
strated decrease in dimethylglycine (the product of the
BHMT reaction) according to the number of c.716A alleles
(Fredriksen et al. 2007), suggesting that this polymorphism
may have metabolic effects. The variant c.716A allele has
been associated with increased risk (Morin et al. 2003),
decreased risk (Boyles et al. 2006), or no change in risk
(Zhu et al. 2005) of spina bifida, and decreased risk of
coronary artery disease (Weisberg et al. 2003) and no
association with risk of cardiovascular disease (Heil et al.
2000) or aortic aneurysm (Giusti et al. 2008). Furthermore,
carriers of the variant allele have been reported to have
increased risk of colorectal cancer (Koushik et al. 2006)

and possibly decreased risk of colorectal adenoma when
combined with high methyl status (Hazra et al. 2007). The
BHMT c.716G>A polymorphism was not associated with
breast cancer risk (Xu et al. 2008b), but breast cancer
patients with the variant allele had increased overall
mortality (Xu et al. 2008a). Thus, studies on BHMT
c.716G>A and disease risk have provided somewhat
inconsistent results, which provide no clue to a role of
betaine in the pathogenesis of birth defects, cardiovascular
disease, and cancer.

Summary and conclusion

Choline is an essential nutrient in humans that serves as a
precursor of phospholipids and acetylcholine and has been
shown to effect neurodevelopment in rodents. Its oxidation
to betaine provides a link to folate-dependent, one-carbon
metabolism. The metabolic ramifications and results from
experimental studies demonstrate an important role of
choline and betaine in normal physiology and suggest the
involvement in pathogenesis of common diseases. Recent
establishment of analytical methods and food composition
data for choline and betaine have motivated clinical and
epidemiological studies on choline–betaine status and
disease risk, mainly for conditions previously investigated
in relation to folate status. Human data are sparse, the
number of studies is limited, and no large placebo-
controlled intervention trial on choline/betaine supplemen-
tation has been published. Thus, choline and betaine in
humans is a research area in its infancy but with the
potential to generate data leading to strategies for disease
prevention.
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