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Review

Betaine: a key modulator of one-carbon metabolism and

homocysteine status

Figure 1 Chemical structure of betaine.
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Abstract

Betaine serves as a methyl donor in a reaction con-
verting homocysteine to methionine, catalysed by the
enzyme betaine-homocysteine methyltransferase. It
has been used for years to lower the concentration of
plasma total homocysteine (tHcy) in patients with
homocystinuria, and has recently been shown to
reduce fasting and in particular post-methionine load
(PML) tHcy in healthy subjects.

Betaine exists in plasma at concentrations of about
30 mmol/L; it varies 10-fold (from 9 to 90 mmol/L)
between individuals, but the intra-individual variabil-
ity is small. Major determinants are choline, dime-
thylglycine and folate in plasma, folic acid intake and
gender.

Recent studies have demonstrated that plasma
betaine is a stronger determinant of PML tHcy than
are vitamin B6 and folate. The betaine-PML tHcy rela-
tionship is attenuated after supplementation with B-
vitamins, and is most pronounced in subjects with
low folate. Betaine shows a weaker association with
fasting tHcy (than with PML tHcy), and also this asso-
ciation is most pronounced in subjects with low
folate. In pregnancy, plasma betaine declines until
gestational week 20, and thereafter remains constant.
From gestational week 20 onwards, fasting tHcy
shows a strong inverse association with plasma beta-
ine, and betaine becomes a stronger predictor than
folate of fasting tHcy.

To conclude, betaine status is a component of an
individual’s biochemical make-up with ramifications
to one-carbon metabolism. Betaine status should be
investigated in pathologies related to altered metab-
olism of homocysteine and folate, including cardio-
vascular disease, cancer and neural tube defects.
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Introduction

Betaine (N,N,N-trimethylglycine; Figure 1) was named
after its discovery in sugar beets (Beta vulgaris) in the
19th century. It is a small N-trimethylated amino acid,
existing in zwitterionic form at neutral pH. This sub-
stance is often called ‘‘glycine betaine’’ to distinguish
it from analogous compounds that are widely distrib-
uted in microorganisms, plants and animals. Many
serve as organic osmolytes, i.e., as substances syn-
thesised or taken up from the environment by cells
for protection against osmotic stress, drought, high
salinity or high temperature (1). Intracellular accu-
mulation of betaines, non-perturbing to enzyme func-
tion, protein structure and membrane integrity,
permits water retention in cells, thus protecting a
number of vital metabolic pathways from the effects
of dehydration (2).

In humans, glycine betaine, hereafter denoted beta-
ine, and carnitine (3-hydroxy-4-N-trimethylammo-
niumbutyrate) are betaines with additional biological
functions and play important roles in cellular metab-
olism (3). Other dietary betaines (like proline betaine
and trigonelline) have no known physiological func-
tion in man.

Nutritional and metabolic sources of betaine

Betaine is obtained by humans from foods, either as
betaine or choline-containing compounds. Food items
with the highest content of betaine are wheat, spin-
ach, shellfish and sugar beets (4, 5). Estimates of beta-
ine intake are from 0.1 to 1 g/day (3, 6) and as high
as 2.5 g/day for a diet high in whole wheat and sea-
food (3). Thus, the intake depends on food composi-
tion, but is probably also related to production of the
food items, including growing and osmotic conditions
(3). Betaine is rapidly absorbed after oral administra-
tion in humans, and the bioavailability is assumed to
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Figure 2 Formation and metabolism of betaine and its role in homocysteine remethylation and one-carbon metabolism. The
scheme encompasses reactions known to take place in the mammalian liver. AdoHcy, S-adenosylhomocysteine; AdoMet, S-
adenosylmethionine; BAD, betaine aldehyde dehydrogenase; Bet, betaine; BHMT, betaine-homocysteine S-methyltransferase;
CCT, CTP-phosphocholine cytidylyltransferase; CK, choline kinase; CO, choline oxidase; CPT, choline phosphotransferase; DD,
dimethylglycine dehydrogenase; DMG, dimethylglycine; Gly, glycine; Hcy, homocysteine; Met, methionine; mTHF, 5-methyl-
tetrahydrofolate; MTHF, methylenetetrahydrofolate; MTR, methionine synthase; PC, phosphatidylcholine; PE, phosphatidyl-
ethanolamine; PEMT, phosphatidylethanolamine N-methyltransferase; Sarc, sarcosine (monomethylglycine); SD, sarcosine
dehydrogenase; Ser, serine; SHMT, serine hydroxymethyltransferase; THF, tetrahydrofolate.

be close to 100% (7). It is absorbed in the ileum via
‘imino’ porters along with other dietary betaines such
as proline betaine (mainly citrus) and trigonelline
(predominantly coffee) (8). Most intracellular betaine
is probably obtained by uptake from the extracellular
medium rather than synthesis (9).

Alternatively, betaine is formed from choline. Cho-
line is mainly derived from phosphatidylcholine,
which is either synthesised de novo (Figure 2) or
obtained through the diet. Foods rich in phosphati-
dylcholine and other choline compounds are beef,
chicken, liver and eggs (5).

The conversion of choline to betaine is a two-step
enzymic process, which takes place in the liver and
kidney. Choline is first oxidised to betaine aldehyde,
a reaction catalysed by the mitochondrial choline
oxidase (choline dehydrogenase, EC 1.1.99.1), and
betaine aldehyde is further oxidised in the mitochon-

dria or cytoplasm to betaine by betaine aldehyde
dehydrogenase (EC 1.1.1.8). Other metabolic routes of
choline metabolism are formation of acetylcholine
and phospholipids, including phosphatidylcholine
(10, 11) (Figure 2).

Free choline can either be transported into the mito-
chondria where it is oxidised to betaine, or can be
converted to phosphocholine and thereby directed
into phospholipid synthesis (Figure 2). Only minor
amounts are used for acetylcholine synthesis. Enzyme
kinetic studies (12, 13) and metabolic tracer studies in
rat liver suggest that the synthesis of phosphocholine
is favoured at low choline concentration, as observed
during choline deficiency, whereas conversion into
betaine (and further to glycine) becomes predominant
at high choline levels. Choline oxidation may there-
fore serve as a spillover pathway under conditions of
high dietary choline (14).
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Betaine function and metabolism in mammals

Betaine has three known functions in mammals. It is
an organic osmolyte that accumulates in renal med-
ullary cells and some other tissues to balance extra-
cellular hypertonicity (9, 15–17). Secondly, it also acts
like a chaperone to stabilise protein structure under
denaturing conditions (9). Finally, it serves as a meth-
yl donor in the betaine homocysteine methyltransfe-
rase (BHMT) reaction which converts homocysteine to
methionine (18).

BHMT is a cytosolic zinc metalloenzyme, which is
expressed at a high level in human liver and kidney.
The enzyme catalyses a methyl transfer reaction from
betaine to homocysteine, thereby converting them to
dimethylglycine (DMG) and methionine, respectively.
Homocysteine remethylation is also catalysed by
the ubiquitous methionine synthase, which uses 5-
methyltetrahydrofolate as methyl donor. Thus, homo-
cysteine resides at the point of convergence of bet-
aine and folate metabolism (18). Furthermore, the
BHMT reaction represents the first step along a path-
way where three methyl groups of choline are made
available to the one-carbon pool. The other two meth-
yl groups from betaine enter the folate pool through
the formation of 5,10-methylenetetrahydrofolate in
the mitochondria, as detailed in Figure 2.

Studies on nutritional effects on the BHMT activity
indicate an important role of this enzyme in one-car-
bon metabolism. The BHMT activity, in the livers of
both rats and chicken, increases drastically during
methionine restriction, but only in the presence of
sufficient dietary choline or betaine. Thus, BHMT is
up-regulated and will conserve the homocysteine
backbone only when betaine is available (14).

Hepatic BHMT also increases moderately during
methionine excess. This remarkable biphasic re-
sponse has led to the suggestion that BHMT may
have multiple roles, i.e., methionine conservation dur-
ing methionine restriction, but also removal of excess
choline, betaine or homocysteine. Methionine excess
decreases the activity of the folate-dependent methi-
onine synthase, which agrees with the role of this
enzyme in methionine conservation (18). Notably, ani-
mal experiments suggest that the overall homocys-
teine remethylation to methionine during methionine
balance is shared about equally between BHMT and
methionine synthase (19).

Nutritional experiments in rats, studies of betaine
and choline effects in methylenetetrahydrofolate
reductase (MTHFR) knock-out mice (20, 21), and
observations in humans, all point to a strong inter-
relationship between the BHMT and methionine syn-
thase pathways (22). During choline deprivation
leading to low betaine content, more 5-methyltetra-
hydrofolate is used for homocysteine remethylation,
thereby increasing folate requirements. Conversely,
during folate deficiency, methyl groups from choline
and betaine are used, thereby increasing choline
requirements. Thus, 5-methyltetrahydrofolate and
choline/betaine have been regarded as fungible
sources of methyl groups (22).

BHMT is a component of the methionine cycle. A
model for the regulation of this cycle has been com-
posed, based on data on enzymes involved, their
activities, kinetic characteristics, and levels of sub-
strates and products. Both BHMT and methionine
synthase have a low Km for homocysteine, and methi-
onine synthase activity is highest at low methionine
levels. Elevated S-adenosylmethionine (AdoMet),
resulting from methionine excess, inhibits BHMT and
formation of 5-methyltetrafolate catalysed by MTHFR
(18). Thus, homocysteine remethylation is favoured at
low levels of homocysteine and methionine. Cysta-
thionine b-synthase and methionine adenosyltrans-
ferase-III are high Km enzymes which are stimulated
by AdoMet, and the expression is enhanced at high
methionine levels. Thus, during methionine excess,
homocysteine is directed towards the transsulfuration
pathway and methionine is converted into AdoMet
(19, 23, 24).

Plasma and urinary betaine and its

determinants

The median concentration of betaine in plasma/serum
is about 30 mmol/L (25), but varies substantially
between individuals, i.e., the concentrations may
range from 9 to 90 mmol/L, and 10–90 percentiles typ-
ically are 20–40 mmol/L. Men have about 15% higher
levels than women (26–29). The plasma concentration
decreases during pregnancy to the same extent as
total homocysteine (tHcy) and related metabolites,
and reaches a plateau at about gestational week 20
(30). This reduction may partly be attributed to plas-
ma volume expansion, but could, like the effect of
gender, result from hormonal effects on betaine
metabolism (31). Such hormonal control could be
explained by the presence of consensus sites for ster-
oid hormones, including oestrogen and androgen
binding sites, in the human BHMT gene (14).

Notably, despite the large inter-individual variabili-
ty, there is a small intra-individual variation in plasma
betaine concentration over a 3-year period. Thus,
plasma betaine seems to be under strict metabolic
control, giving individual set points for betaine con-
centration in serum/plasma (32). However, plasma
betaine increases moderately (-30%) 2–3 h after a
light meal (28, 33), shows a transient increase (about
15%) 4 h after methionine loading (29), and increases
in a dose-dependent manner following supplementa-
tion with folic acid at doses ranging from 50 to
800 mg/day (34). The effect of diet is explained by
increased intake of betaine or its precursor, choline;
high doses of methionine may either enhance betaine
synthesis or decrease betaine utilisation (through
AdoMet inhibition of BHMT), whereas long-term
folate supplementation probably has a betaine-spar-
ing effect.

The effect of folic acid supplementation on plasma
betaine is in agreement with the observation that
serum folate shows a positive association with plas-
ma betaine in some (34, 35), but not all (29), studies.
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Such a relation becomes evident in a large population
with a wide range of folate concentrations. Choline is
an even stronger predictor of plasma betaine and
shows a positive linear association across the whole
range of plasma choline concentrations (35). There is
also a positive association between plasma betaine
and plasma DMG, which can be explained by DMG
production from betaine (35). At DMG concentrations
above the 80th percentile, there is no further increas-
es in betaine (25).

In healthy subjects, plasma betaine is not related to
urinary excretion of betaine, which is less than 5% of
the creatinine excretion (26). The urinary excretion of
betaine is strongly related to plasma tHcy (33). It
increases transiently in parallel with that of other
osmolytes in response to a water load, but remains
low during water deprivation (36). The plasma betaine
level seems to be strictly controlled under these con-
ditions, and is not influenced by acute diuresis or anti-
diuresis (32).

There are few studies on plasma betaine and its
relation to disease. Plasma betaine is normal or
slightly reduced in subjects with renal dysfunction
(25, 27), which is in agreement with no or a weak,
inverse association between betaine and creatinine
(35). The plasma betaine reduction in renal patients
does not correlate with an increase in urinary betaine
excretion (27), and contrasts to the marked increase
in plasma DMG in renal patients (37) and the strong
positive association of serum creatinine with plasma
DMG and choline (29).

In diabetic patients, plasma betaine is normal, but
betaine excretion is increased up to fivefold (27). The
betaine excretion is not strongly related to impaired
renal function (27), but is positively related to markers
of proximal tubular dysfunction (retinol binding pro-
tein) and indicators of poor glycaemic control, includ-
ing elevated plasma glucose (38). However, an animal
experiment demonstrated no change in betaine excre-
tion during acute increase in plasma glucose follow-
ing glucose infusion (39). It is therefore unlikely that
increased urinary betaine excretion in diabetics
results from an acute effect of high glucose on renal
osmoregulation. Increased excretion may reflect renal
damage from long-term hyperglycaemia or a renal
complication of diabetes unrelated to blood glucose
per se.

Effect of betaine or choline supplementation

on plasma tHcy

High doses (6 g/day and over) of betaine, alone or in
combination with B-vitamins, have been used for
years to treat patients with homocystinuria. This
includes patients with cystathionine b-synthase defi-
ciency who do not respond to vitamin B6 (40), and
rare forms caused by MTHFR deficiency or by defects
in cobalamin metabolism (41). Such treatment reduc-
es plasma tHcy and partly corrects other biochemical
abnormalities, but also improves the clinical condi-
tion. No side effects have been observed (40, 41).

Betaine has recently been investigated as a tHcy-
lowering agent in subjects without homocystinuria
(42). In healthy subjects, betaine at doses between 1.5
and 6 g/day reduces the increase in tHcy after methi-
onine loading in a dose-dependent manner, and at
6 g, the reduction is about 40% (43, 44). Folic acid is
not effective. Studies on rats injected with betaine
suggest that the reduction of post-methionine load
(PML) tHcy is an immediate effect occurring within
minutes (45).

Fasting tHcy is reduced in a dose-dependent man-
ner following oral betaine given at doses of 1–6 g/day.
The reduction obtained with the highest dose is up to
20%, but is related to the pretreatment tHcy level (44,
46, 47). Thus, the reduction is of a similar magnitude
to that observed with folic acid, and only a marginal
additional effect was observed by adding folic acid.
Preliminary observation suggests that the betaine
effect is fast and becomes manifest within hours (44,
47).

Betaine supplementation reduces PML tHcy but not
fasting tHcy in renal patients who are folate- and vita-
min B6-replete (48).

A recent study demonstrated a reduction of fasting
tHcy by oral intake of choline (given as phosphatidyl-
choline), which was of similar magnitude to that
obtained with an equivalent dose of betaine. A single
dose of choline also reduced PML tHcy, but seemed
to be less effective than betaine, possibly because
oxidation to betaine is required before one-carbon
units become available for homocysteine remethyla-
tion (49). Furthermore, dietary choline deficiency has
the opposite effect. Such a dietary intervention
increases PML tHcy by 35% in humans and 100% in
mice (50).

In conclusion, oral betaine or choline, at doses sim-
ilar to the amounts found in some diets, reduce fast-
ing tHcy and, in particular, PML tHcy.

Betaine and serum lipids

Betaine supplementation, at doses of 4–6 g/day for
12 weeks, increases total serum cholesterol, low-den-
sity lipoprotein (LDL), high-density lipoprotein (HDL)
and triacylglycerol concentrations by up to 10% in
patients with renal failure (48), and increases serum
total cholesterol, LDL cholesterol and triacylglycerol
by 12–14% in obese subjects who are on a weight-
loss diet (46). Similar effects from betaine supple-
mentation on serum lipids have been observed in
healthy subjects (42). Other studies have shown that
choline-deficient humans (51) and patients receiving
parenteral nutrition without choline (52) have low
total cholesterol, and choline supplementation in rats
increases serum cholesterol (53). These observations
suggest that dietary choline increases serum lipids in
humans, but conclusive studies in humans have not
been conducted (42).

A likely mechanism for the cholesterol elevation by
betaine or choline supplementation is enhanced syn-
thesis of phosphatidylcholine which enhances assem-
bly of very-low-density lipoprotein (VLDL), a transport
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vehicle for lipids from the liver into plasma (54). A
possible clinical implication is that cholesterol eleva-
tion may offset some benefits of the tHcy-lowering
effect of betaine or choline (42).

A recent study demonstrated a significant inverse
correlation between plasma betaine and plasma lip-
ids, including triglycerides, total cholesterol, HDL cho-
lesterol and apolipoprotein A1 in 502 cardiovascular
patients (55). This observation is apparently in conflict
with the increased levels of serum lipids observed
after betaine supplementation. The relation of lipids
in serum/plasma to betaine and choline concentra-
tions in subjects on a normal diet vs. subjects supple-
mented with high doses of these lipotropic agents
should be further investigated.

Betaine as determinant of plasma tHcy

It is important to investigate the relation between
endogenous betaine and tHcy in plasma/serum for
two reasons. tHcy is a risk factor for various diseases,
including cardiovascular disease, impaired cognitive
function and birth defects. Secondly, plasma tHcy is
a measure of the function of several B-vitamins,
which is explained by the converging actions of these
vitamins on homocysteine metabolism. Likewise,
plasma tHcy may reflect the role of betaine in overall
homocysteine remethylation in humans (56).

The increase in tHcy following methionine loading
is inversely associated with plasma betaine in cardio-
vascular patients. This effect is attenuated after the
patients have been supplemented with B-vitamins
(folate, vitamin B6 and cobalamin) for 3 months (29).
In a large study on 500 healthy subjects (35), plasma
betaine was the strongest predictor of the PML
increases in tHcy, with an (adjusted) mean change in
tHcy of 7.2 mmol/L when comparing the extreme
betaine quartiles. This is in agreement with the
pronounced reduction in PML tHcy by betaine supple-
mentation (42). Similar estimates of mean PML tHcy
changes according to folate, cobalamin and vitamin
B6 were 3.2, 3.2 and 3.7 mmol/L, respectively. The
inverse association between the PML increase in tHcy
and plasma betaine was strongest at low folate, and
with an interaction between folate and betaine of bor-
derline significance (35).

Early studies on the association between plasma
betaine and fasting tHcy showed variable results.
Plasma betaine showed a moderate inverse associa-
tion with fasting tHcy in 120 cardiovascular (20) and
in 99 renal patients (37), whereas no such relation was
observed by simple correlation analysis in 60 healthy
blood donors (25), in 500 healthy subjects (35) or in
158 patients attending a lipid clinic (33). In three stud-
ies, an inverse relation was observed after appropri-
ate multiple adjustments for factors showing a
positive relation to both betaine and tHcy (33, 35, 57).
More important, plasma betaine appears to be a
strong predictor of fasting tHcy in subjects with low
serum folate, and a strong interaction between folate
and betaine has been observed (35). The latter obser-
vation has been pursued in a large study on 10,700

healthy subjects, which demonstrated that in subjects
with low folate (-9.7 nmol/L) and the MTHFR 677TT
genotype, betaine is a very strong predictor of plasma
tHcy, corresponding to a mean tHcy change of
5.4 mmol/L across the extreme betaine quartiles (58).
Thus, these data strongly suggest that betaine takes
over as a methyl donor and sustains methionine syn-
thesis under conditions of impaired folate status.

Pregnancy imposes a considerable stress on folate
stores, and inadequate folate status is common in
pregnancy (59). An increased maternal plasma/serum
folate during pregnancy and higher blood folate in the
newborn than in the mother probably reflect condi-
tions favouring a maternal-to-foetal folate transfer
(59). Likewise, increasing maternal plasma choline
during pregnancy, and a plasma choline in the new-
born, which is three times higher than in the mother,
indicate efficient choline transfer. Under these condi-
tions of folate and choline provision to the foetus,
maternal plasma betaine is reduced but becomes a
strong determinant of maternal plasma tHcy. More
precisely, in early pregnancy, plasma folate, but not
plasma betaine, is a strong determinant of plasma
tHcy. During the course of pregnancy, the inverse
association between maternal betaine and tHcy is
strengthened and betaine becomes the strongest
determinant at gestational week 36 (30) and at deliv-
ery (57). Thus, betaine-dependent homocysteine
remethylation seems to be enhanced under condi-
tions of altered folate status imposed by pregnancy.

Conclusion

Betaine is an important nutrient, which is obtained
from foods or is synthesised endogenously from cho-
line. It serves as an osmolyte and a methyl donor, and
thereby is linked to folate and homocysteine metab-
olism. The betaine concentration in human serum/
plasma shows large inter-individual variations, but
the intra-individual variability over time is small, sug-
gesting that betaine is under strict metabolic control.
Recent data from studies in humans demonstrate that
betaine becomes an important source of methyl
groups under conditions of impaired folate status, an
idea substantiated by animal experiments. The role of
betaine in human health and disease should be fur-
ther investigated.
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