BEVITAL AS

Cardiometabolic

65 biomarkers of 5 different classes from 200μl sample volume on GC- and LC-MS/MS platforms. Contact our experts for any questions or inquiries.

Why did we design this panel?

We developed this targeted metabolomics panel for investigating cardiometabolic health to achieve high specificity and sensitivity in identifying biomarkers and metabolites, understanding disease mechanisms, and supporting research and personalized medicine. This approach aids in:

Early Detection: Enabling early identification of individuals at risk of cardiometabolic diseases, such as diabetes, hypertension, and heart disease, before symptoms appear.
Precise Diagnosis: The panel provides a more accurate diagnosis by targeting specific biomarkers associated with cardiometabolic health, allowing for tailored interventions.
Monitoring Disease Progression: Longitudinal assessments can track changes in profiles over time, helping clinicians understand disease progression and the impact of lifestyle or therapeutic interventions.
Treatment Optimization: The panel can help in selecting the most effective treatment options and adjusting them according to the individual’s specific metabolic profile.
Integration with Other Omics: Combined with genomic, proteomic, or lipidomic data, the cardiometabolic panel can offer a more comprehensive understanding of the disease, advancing research and enabling the development of novel therapeutics.
Improved Outcomes in Population Health: On a larger scale, the cardiometabolic panel can help in population screening and identify trends or high-risk groups, informing public health strategies and interventions.

Applications: Atherosclerosis and peripheral artery disease (PAD), cardiovascular diseases, chronic kidney disease (CKD), metabolic syndrome, neurodegenerative diseases, metabolic dysfunction-associated fatty liver disease (MAFLD), obesity, polycystic ovary syndrome (PCOS), type 2 diabetes and prediabetes.

Amino acids and catabolites

31 markers by GC-MS/MS

Abnormal concentrations of free amino acids in plasma have been associated with risk of cancer, metabolic syndrome, diabetes. Low levels are observed in frail, elderly persons. Elevated branched chain amino acids (BCAA; Leu, Ile and Val) are associated with insulin resistance, diabetes type 2, cardiovascular disease and early kidney disease. The valine catabolite, 3-hydroxyisobutyrate (3HIB) is belived to play a key role in the development of insulin resistance. β-Aminoisobutyrate (BAIBA) increases with exercise and is inversely association with cardiometabolic risk factors.

Alanine, Arginine, Asparagine, Aspartic acid, Glutamic acid, Glutamine, Glycine, Histidine, Isoleucine, Kynurenine, Leucine, Lysine, Methionine, Ornithine, Phenylalanine, Proline, Sarcosine, Serine, Threonine, Total cysteine, Tryptophan, Tyrosine, Valine, 2-Aminoadipic acid, 2-Hydroxybutyrate, 3-Hydroxysiobutyrate, α-Hydroxyglutaric acid, β-Alanine, β-Aminoisobutyrate, β-Hydroxy B-methylbutyric acid, Phenylacetylglutamine

Acylcarnitines

23 markers by LC-MS/MS

Acylcarnitine esters are formed from the CoASH esters of acetate, propionate, butyrate, medium-chain, long-chain and very-long-chain fatty acids. Acylcarnitines cross the mitochondrial membrane, and such transport is required for beta-oxidation of long-chain fatty acids for energy production. Carnitine is mainly obtained through the diet, can be consumed as supplement, but about 30% is supplied by de novo synthesis from trimethyllysine (TML), which takes place in liver and kidney. The final step in the synthesis is catalyzed by the α-ketoglutarate-dependent enzyme, gamma-butyrobetaine  dioxygenase (BBOX) that converts gamma-butyrylbetaine (BB) into carnitine. Circulating levels of carnitine and acylcarnitines have been related to risk of insulin resistance, diabetes 2, MAFLD and cardiovascular disease.

BB, C0, C2, C3, C3-DC, C4, C4-OH, C4-DC, iC5, C5-DC, C5:1, C6, C8, C10, C12, C14, C14-OH, C16, C16-OH, C18, C18-OH, C18:1, C18:2

TCA metabolites

7 markers by GC-MS/MS

Studies on metabolomics involving Krebs cycle intermediates in relation to human health and disease usually include few patients and have been performed only recently. These metabolites have been related to BMI, cardiovascular disease (pyruvate, citrate, succinate), diabetes (pyruvate, isocitrate, succinate), MAFLD (isocitrate and citrate), longevity (isocitrate), asthma (succinate), disease activity in rheumatoid arthritis patients (itaconate), and worsening of clinical outcome in cancer patients (succinate, fumarate and α-hydroxyglutarate).

α-Ketoglutarate, Citrate, Fumarate, Isocitrate, Lactate, Malate, Pyruvate

Ketone bodies

2 markers by GC-MS/MS

3-Hydroxybutyrate (bHB) is the most abundant ketone body. It is synthesized from acyl-CoA primarily in the liver. Increasing serum/plasma bHB concentrations reflect upregulated fatty acid β-oxidation as well as ketogenic amino acids catabolism in the liver and skeletal muscle to compensate insufficient glucose supply. bHB synthesis is stimulated and serum/plasma levels increase under conditions of fasting, endurance exercise, malnutrition or metabolic disorders including diabetes mellitus. Acetoacetate (AcAc) is a ketone body primarily produced in the liver under conditions of excessive fatty acid breakdown, including diabetes mellitus leading to diabetic ketoacidosis. High levels of ketone bodies, like bHB and AcAc, are not only indicators of diabetic hyperglycemia, but also markers of disturbed glucose metabolism in the prediabetic state.

Acetoacetate, 3-Hydroxybutyrate

AGEs

2 markers by LC-MS/MS

N(ε)-(carboxymethyl)lysine (CML) and N(6)-(1-carboxyethyl)-L-lysine (CEL) are advanced glycation end products (AGEs) generated by the Maillard reaction (MR) during thermal treatment of foods or are formed in vivo by nonenzymatic chemical reactions, taking place in tissues or fluid where significant concentration of glucose, fructose, or more reactive dicarbonyls react with proteins. CEL is primarily formed by reaction between methylglyoxal and lysine (the AGE path), which is dependent on hyperglycaemia. Thus, the pathways contributing to CEL formation appear to be more limited compared with CML. Like CML, CEL in tissues and serum/plasma increase with age, and have been assigned a role in the pathogenesis of age-related, chronic diseases, including diabetes, cardiovascular disease, Alzheimer’s disease and renal dysfunction.

Carboxyethyllysine, Carboxymethyllysine

Scroll to Top

Statistical power is the probability that a statistical test will correctly reject a false null hypothesis (H0​) when a specific alternative hypothesis (H1​) is true. H0​ is the null hypothesis, which states there is no effect or no difference. H1​ is the alternative hypothesis, which states there is a real effect or difference. Alpha (α) is the probability of a Type I error (a false positive), which is the risk of incorrectly rejecting the H0​ when it is actually true. You set this value before the experiment, commonly at 0.05. Beta (β) is the probability of a Type II error (a false negative), which is the risk of failing to reject the H0​ when it is actually false.

Power is calculated as 1−β. Increasing power means you are decreasing the probability of making a Type II error.

Several factors can be adjusted to increase the power of a statistical test:

  • Effect Size: This is the magnitude of the difference you are trying to detect. A larger effect size is easier to detect, thus increasing power. 

  • Sample Size: The number of observations in a study. A larger sample size provides more information about the population, reducing the margin of error and increasing the power to detect a true effect.

  • Variation: Refers to the spread or standard deviation of the data within the population. Less variation makes it easier to distinguish a real effect from random noise, thereby increasing power.

  • Alpha (): Increasing the alpha level (e.g., from 0.05 to 0.10) also increases power, but at the cost of a higher risk of a Type I error. This trade-off is often undesirable.

562 entries « 1 of 29 »
1.

Bakker, Lieke; Ramakers, Inez H G B; van Greevenbroek, Marleen M J; Backes, Walter H; Jansen, Jacobus F A; Schram, Miranda T; van der Kallen, Carla J H; Schalkwijk, Casper G; Wesselius, Anke; Ulvik, Arve; Ueland, Per M; Verhey, Frans R J; Eussen, Simone J P M; Köhler, Sebastian

The kynurenine pathway and markers of neurodegeneration and cerebral small vessel disease: The Maastricht Study Journal Article

In: J Neurol Sci, vol. 474, pp. 123522, 2025, ISSN: 1878-5883.

Abstract | Links | BibTeX

2.

Holthuijsen, Daniëlle D B; van Roekel, Eline H; Bours, Martijn J L; Ueland, Per M; Breukink, Stéphanie O; Janssen-Heijnen, Maryska L G; Konsten, Joop L; Keulen, Eric T P; McCann, Adrian; Brezina, Stefanie; Gigic, Biljana; Kok, Dieuwertje E; Ulrich, Cornelia M; Weijenberg, Matty P; Eussen, Simone J P M

Modeling how iso-caloric macronutrient substitutions are longitudinally associated with plasma kynurenines in colorectal cancer survivors up to 12 months post-treatment Journal Article

In: J Nutr Biochem, vol. 141, pp. 109910, 2025, ISSN: 1873-4847.

Abstract | Links | BibTeX

3.

Belen, Sergen; Patt, Nadine; Kupjetz, Marie; Ueland, Per M; McCann, Adrian; Gonzenbach, Roman; Bansi, Jens; Zimmer, Philipp

Vitamin B status is related to disease severity and modulated by endurance exercise in individuals with multiple sclerosis: a secondary analysis of a randomized controlled trial Journal Article

In: Am J Clin Nutr, vol. 121, no. 6, pp. 1403–1414, 2025, ISSN: 1938-3207.

Abstract | Links | BibTeX

4.

Dahl, Tuva B; Aftab, Friha; Prebensen, Christian; Berdal, Jan-Erik; Ueland, Thor; Barratt-Due, Andreas; Riise, Anne Ma Dyrhol; Ueland, Per Magne; Hov, Johannes R; Trøseid, Marius; Aukrust, Pål; Gregersen, Ida; Myhre, Peder L; Omland, Torbjørn; Halvorsen, Bente

Imidazole propionate is increased in severe COVID-19 and correlates with cardiac involvement Miscellaneous

2025, ISSN: 1532-2742.

Links | BibTeX

5.

Banjara, Sarala; Berggreen, Ellen; Igland, Jannicke; Åstrøm, Anne-Kristine; Midttun, Øivind; Bunæs, Dagmar; Sulo, Gerhard

Plasma levels of immune system activation markers Neopterin and Kynurenine-to-Tryptophan Ratio, and oral health among community-dwelling adults in Norway: a population-based, cohort study Journal Article

In: Acta Odontol Scand, vol. 84, pp. 218–225, 2025, ISSN: 1502-3850.

Abstract | Links | BibTeX

6.

Holthuijsen, Daniëlle D B; Rijnhart, Judith J M; Bours, Martijn J L; van Roekel, Eline H; Ueland, Per M; Breukink, Stéphanie O; Janssen-Heijnen, Maryska L G; Konsten, Joop L; Keulen, Eric T P; McCann, Adrian; Brezina, Stefanie; Gigic, Biljana; Ulrich, Cornelia M; Weijenberg, Matty P; Eussen, Simone J P M

Longitudinal associations of dietary intake with fatigue in colorectal cancer survivors up to 1 year post-treatment, and the potential mediating role of the kynurenine pathway Journal Article

In: Brain Behav Immun, vol. 126, pp. 144–159, 2025, ISSN: 1090-2139.

Abstract | Links | BibTeX

7.

Joisten, Niklas; Reuter, Marcel; Rosenberger, Friederike; Venhorst, Andreas; Kupjetz, Marie; Walzik, David; Schenk, Alexander; McCann, Adrian; Ueland, Per Magne; Meyer, Tim; Zimmer, Philipp

Exercise training restores longevity-associated tryptophan metabolite 3-hydroxyanthranilic acid levels in middle-aged adults Journal Article

In: Acta Physiol (Oxf), vol. 241, no. 5, pp. e70041, 2025, ISSN: 1748-1716.

Abstract | Links | BibTeX

8.

Jørgensen, Silje F; Braadland, Peder R; Ueland, Thor; Fraz, Mai S A; Michelsen, Annika E; Holm, Kristian; Osnes, Liv T; Trøseid, Marius; Ueland, Per Magne; Fevang, Børre; Aukrust, Pål; Hov, Johannes R

Tryptophan-kynurenine metabolites associate with inflammation and immunologic phenotypes in common variable immunodeficiency Journal Article

In: J Allergy Clin Immunol, 2025, ISSN: 1097-6825.

Abstract | Links | BibTeX

9.

Grytten, Elise; Laupsa-Borge, Johnny; Cetin, Kaya; Bohov, Pavol; Nordrehaug, Jan Erik; Skorve, Jon; Berge, Rolf K; Strand, Elin; Bjørndal, Bodil; Nygård, Ottar K; Rostrup, Espen; Mellgren, Gunnar; Dankel, Simon N

Inflammatory markers after supplementation with marine n-3 or plant n-6 PUFAs: A randomized double-blind crossover study Journal Article

In: J Lipid Res, vol. 66, no. 4, pp. 100770, 2025, ISSN: 1539-7262.

Abstract | Links | BibTeX

10.

Trollebø, Marte A; Tangvik, Randi J; Skeie, Eli; Nygård, Ottar; Eagan, Tomas M L; McCann, Adrian; Dierkes, Jutta

Metabolic profiles and malnutrition in hospitalized adults: A metabolomic cohort study Journal Article

In: JPEN J Parenter Enteral Nutr, vol. 49, no. 3, pp. 365–372, 2025, ISSN: 1941-2444.

Abstract | Links | BibTeX

11.

Valim, Valéria; Oliveira, Fabíola R; Miyamoto, Samira T; Serrano, Érica V; Balarini, Gabriela M; Tanure, Leandro A; Ferreira, Gilda A; Zandonade, Eliana; Brun, Johan G; Jonsson, Malin; Maeland, Elisabeth; Ulvik, Arve; Ueland, Per Magne; Jonsson, Roland; Mydel, Piotr M

Kynurenines and neopterin are interferon-gamma-inducible biomarkers for Sjögren's disease Journal Article

In: Rheumatology (Oxford), 2025, ISSN: 1462-0332.

Abstract | Links | BibTeX

12.

Wilson, Edward N; Umans, Jacob; Swarovski, Michelle S; Minhas, Paras S; Mendiola, Justin H; Midttun, Øivind; Ulvik, Arve; Shahid-Besanti, Marian; Linortner, Patricia; Mhatre, Siddhita D; Wang, Qian; Channappa, Divya; Corso, Nicole K; Tian, Lu; Fredericks, Carolyn A; Kerchner, Geoffrey A; Plowey, Edward D; Cholerton, Brenna; Ueland, Per M; Zabetian, Cyrus P; Gray, Nora E; Quinn, Joseph F; Montine, Thomas J; Sha, Sharon J; Longo, Frank M; Wolk, David A; Chen-Plotkin, Alice; Henderson, Victor W; Wyss-Coray, Tony; Wagner, Anthony D; Mormino, Elizabeth C; Aghaeepour, Nima; Poston, Kathleen L; Andreasson, Katrin I

Parkinson's disease is characterized by vitamin B6-dependent inflammatory kynurenine pathway dysfunction Journal Article

In: NPJ Parkinsons Dis, vol. 11, no. 1, pp. 96, 2025, ISSN: 2373-8057.

Abstract | Links | BibTeX

13.

Ramos-Rodríguez, Carla; Rojas-Gomez, Alejandra; Santos-Calderón, Luis A; Ceruelo, Santiago; Ríos, Lídia; Ueland, Per M; Fernandez-Ballart, Joan D; Salas-Huetos, Albert; Murphy, Michelle M

The l-Arginine pathway may act as a mediator in the association between impaired one-carbon metabolism and hypertension Journal Article

In: Biochimie, vol. 230, pp. 86–94, 2025, ISSN: 1638-6183.

Abstract | Links | BibTeX

14.

Svenningsson, Mads M; Svingen, Gard Ft; Ueland, Per M; Sulo, Gerhard; Bjørnestad, Espen Ø; Pedersen, Eva R; Dhar, Indu; Nilsen, Dennis W; Nygård, Ottar

Elevated plasma trimethyllysine is associated with incident atrial fibrillation Journal Article

In: Am J Prev Cardiol, vol. 21, pp. 100932, 2025, ISSN: 2666-6677.

Abstract | Links | BibTeX

15.

Damerell, Victoria; Klaassen-Dekker, Niels; Brezina, Stefanie; Ose, Jennifer; Ulvik, Arve; van Roekel, Eline H; Holowatyj, Andreana N; Baierl, Andreas; Böhm, Jürgen; Bours, Martijn J L; Brenner, Hermann; de Wilt, Johannes H W; Grady, William M; Habermann, Nina; Hoffmeister, Michael; Keski-Rahkonen, Pekka; Lin, Tengda; Schirmacher, Peter; Schrotz-King, Petra; Ulrich, Alexis B; van Duijnhoven, Fränzel J B; Warby, Christy A; Shibata, David; Toriola, Adetunji T; Figueiredo, Jane C; Siegel, Erin M; Li, Christopher I; Gsur, Andrea; Kampman, Ellen; Schneider, Martin; Ueland, Per M; Weijenberg, Matty P; Ulrich, Cornelia M; Kok, Dieuwertje E; and, Biljana Gigic

Circulating tryptophan-kynurenine pathway metabolites are associated with all-cause mortality among patients with stage I-III colorectal cancer Journal Article

In: Int J Cancer, vol. 156, no. 3, pp. 552–565, 2025, ISSN: 1097-0215.

Abstract | Links | BibTeX

16.

Fossdal, Guri; Braadland, Peder; Hov, Johannes Roksund; Husebye, Eystein Sverre; Folseraas, Trine; Ueland, Per Magne; Ulvik, Arve; Karlsen, Tom Hemming; Berge, Rolf Kristian; Vesterhus, Mette

Mitochondrial dysfunction and lipid alterations in primary sclerosing cholangitis Journal Article

In: Scand J Gastroenterol, vol. 60, no. 2, pp. 165–173, 2025, ISSN: 1502-7708.

Abstract | Links | BibTeX

17.

Walzik, David; Joisten, Niklas; Schenk, Alexander; Trebing, Sina; Schaaf, Kirill; Metcalfe, Alan J; Spiliopoulou, Polyxeni; Hiefner, Johanna; McCann, Adrian; Watzl, Carsten; Ueland, Per Magne; Gehlert, Sebastian; Worthmann, Anna; Brenner, Charles; Zimmer, Philipp

Acute exercise boosts NAD metabolism of human peripheral blood mononuclear cells Journal Article

In: Brain Behav Immun, vol. 123, pp. 1011–1023, 2025, ISSN: 1090-2139.

Abstract | Links | BibTeX

18.

Santos-Calderón, Luis A; Cavallé-Busquets, Pere; Ramos-Rodríguez, Carla; Grifoll, Carme; Rojas-Gómez, Alejandra; Ballesteros, Mónica; Ueland, Per M; Murphy, Michelle M

Folate and cobalamin status, indicators, modulators, interactions, and reference ranges from early pregnancy until birth: the Reus-Tarragona birth cohort study Journal Article

In: Am J Clin Nutr, vol. 120, no. 5, pp. 1269–1283, 2024, ISSN: 1938-3207.

Abstract | Links | BibTeX

19.

Anfinsen, Åslaug Matre; Myklebust, Vilde Haugen; Johannesen, Christina Osland; Christensen, Jacob Juel; Laupsa-Borge, Johnny; Dierkes, Jutta; Nygård, Ottar; McCann, Adrian; Rosendahl-Riise, Hanne; Lysne, Vegard

Serum concentrations of lipids, ketones and acylcarnitines during the postprandial and fasting state: the Postprandial Metabolism (PoMet) study in healthy young adults Journal Article

In: Br J Nutr, vol. 132, no. 7, pp. 851–861, 2024, ISSN: 1475-2662.

Abstract | Links | BibTeX

20.

Holthuijsen, Daniëlle D B; van Roekel, Eline H; Bours, Martijn J L; Ueland, Per M; Breukink, Stéphanie O; Janssen-Heijnen, Maryska L G; Keulen, Eric T P; Brezina, Stefanie; Gigic, Biljana; Peoples, Anita R; Ulrich, Cornelia M; Ulvik, Arve; Weijenberg, Matty P; Eussen, Simone J P M

Longitudinal associations of plasma kynurenines and ratios with fatigue and quality of life in colorectal cancer survivors up to 12 months post-treatment Journal Article

In: Int J Cancer, vol. 155, no. 7, pp. 1172–1190, 2024, ISSN: 1097-0215.

Abstract | Links | BibTeX

562 entries « 1 of 29 »

Olink Proteomics

Please fill out the fields below (*required).
We will respond to you ASAP.
Thank you!

Customized analyses

Please fill out the fields below (*required).
We will reply to you soon for a detailed project discussion.
Thank you for reaching out to Bevital!

Mix-and-Match

Please fill out the fields below (*required).
We will respond to you as soon as possible.

Ready-to-Run

Please fill out the fields below (*required).
We will respond ASAP.
Thank you!

Thanks for joining!

Get updates about new method developments, publications and comming events.